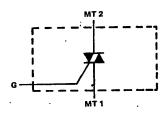
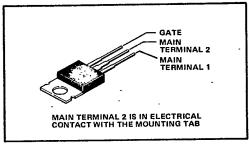
8961726 TEXAS INSTR (OPTO)


62C 35708

TIC206A, TIC206B, TIC206C, TIC206D, TIC216E, TIC206M, TIC206S, TIC206N


SILICON TRIACS REVISED OCTOBER 1984 -25-13

- Sensitive-Gate Triacs
- 100 V to 800 V
- 4 A RMS
- MAX IGT of 5 mA (Quadrants 1-3)

device schematic

TO-220AB PACKAGE

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

· · · · · · · · · · · · · · · · · · ·	TIC206A	TIC206B	TIC206C	TIC206	
Repetitive peak off-state voltage, VDRM (see Note 1)	100 V	200 V	300 V	400 V	
Full-cycle RMS on-state current at (or below) 85°C case temperature 1T(RMS) (see Note 2)	4 A				
Peak on-state surge current, full-sine-wave, ITSM(see Note 3)	25 A				
Peak on-state surge current half-sine-wave, ITSM (see Note 4)	30 A				
Peak gate current, IGM	. ±0.2 A				
Peak gate power dissipation, P _{GM} , at (or below) 85°C case temperature (pulse duration ≤ 200 μs)	1.3 W				
Average gate power dissipation, PG(av), at (or below) 85°C case temperature (see Note 5)	. 0.3 W				
Operating case temperature range	- 40°C to 110°C				
Storage temperature range	- 40°C to 125°C				
Lead temperature 3,2 mm (1/8 inch) from case for 10 seconds	230°C				

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 2. This value applies for 50-Hz full sine wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 120 mA/°C.
 - 3. This value applies for one 50-Hz full sine wave when the device is operating at (or below) the rated value of on-state current.

 Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

 This value applies for one 50-Hz half size wave when the device is operating at (or below) the credit value of on-state current.
 - 4. This value applies for one 50-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 5. This value applies for a maximum averaging time of 20 ms.

1283

4-19

8961726 TEXAS INSTR (OPTO)

62C 36709

T-25-13

TIC206A, TIC206B, TIC206C, TIC206D, TIC206E, TIC206M, TIC206S, TIC206N **SILICON TRIACS**

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

	TIC206E	TIC206M	TIC206S	TIC206N	
Repetitive peak off-state voltage, VDRM (see Note 1)	500 V	600 V	700 V	800 V	
Full-cycle RMS on-state current at (or below) 85°C case temperature IT(RMS) (see Note 2)	4A				
Peak on-state surge current, full-sine-wave, ITSM(see Note 3)	25 A				
Peak on-state surge current half-sine-wave, ITSM (see Note 4)	30 A				
Peak gate current, I _{GM}	±0.2A				
Peak gate power dissipation, P _{GM} , at (or below) 85°C case temperature (pulse duration ≤ 200 μs)	1.3 W				
Average gate power dissipation, PG(av), at (or below) 85°C case temperature (see Note 5)	0.3W .				
Operating case temperature range	-40°C to 110°C				
Storage temperature range	- 40°C to 125°C				
Lead temperature 3,2 mm (1/8 inch) from case for 10 seconds	230°C				

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

- This value applies for 50-Hz full sine wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 120 mA/°C.
- 3. This value applies for one 50-Hz full sine wave when the device is operating at (or below) the rated value of on-state current.
- Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

 4. This value applies for one 50-Hz half sine wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
- 5. This value applies for a maximum averaging time of 20 ms.

INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

4-20

TIC206A, TIC206B, TIC206C, TIC206D, TIC206E, TIC206M, TIC206S, TIC206N **SILICON TRIACS**

	PARAMETER	TEST	CONDITIONS		MIN TYP	MAX	UNIT
IDRM	Repetitive Peak Off-State Current	V _{DRM} = Rated V _{DRM} ,	IG = 0,	T _C = 110°C		± 1	mA
^I GTM	Peak Gate Trigger Current	$V_{\text{supply}} = +12V^{\dagger}$,	$R_L = 10 \Omega$,	t _W (g) ≥ 20 μs	0.5	5	
		$V_{\text{supply}} = +12V^{\dagger}$,	R _L = 10Ω,	t _W (g) ≥ 20 μs	1.5	- 5	mA
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{w(g)} ≥ 20 μs	-2	- 5	
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{W(g)} ≥ 20 μs	3.6	10	
	Peak Gate Trigger Voltage	$V_{\text{supply}} = +12V^{\dagger}$,	R _L = 10Ω,	t _W (g) ≥ 20 μs	0.7	2	
		V _{supply} = +12V [†] ,	R _L = 10 Ω,	t _W (g).≽ 20 μs	-0.7	- 2	l v
V _{GTM}		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{W(g)} ≥ 20 μs -	8.0 - :	- 2	
		$V_{\text{supply}} = -12V^{\dagger}$,	R _L = 10Ω,	t _{w(g)} ≥ 20 μs	0.8	2	<u> </u>
V _{TM}	Peak On-State Voltage	I _{TM} = ±4.2A,	IG = 50 mA,	See Note 6	± 1.3	± 2.2	٧
ıH ,	Holding Current	V _{supply} = +12V [†] , Initiating I _{TM} = 100 mA	I _G = 0,		2	15	mA
		V _{supply} = -12V [†] , Initiating I _{TM} = -100 m	i _G = 0,		-4	- 15	
	Latching Current	$V_{\text{supply}} = +12V^{\dagger}$,	See Note 7		<u> </u>	30	J mA
IL.		$V_{\text{supply}} = -12V^{\dagger}$,	See Note 7		- 30		
dv/dt	Critical Rate of Rise of Off-State Voltage	V _{DRM} = Rated V _{DRM} ,	i _G = 0,	T _C = 110°C .	50		V/μs
dv/dt(c)	Critical Rise of Commutation Voltage	V _{DRM} = Rated V _{DRM} ,	I _{TRM} = ±4.2A,	T _C = 85°C	1 1.3	2.5	V/µs

† All voltages are with respect to Main Terminal 1.

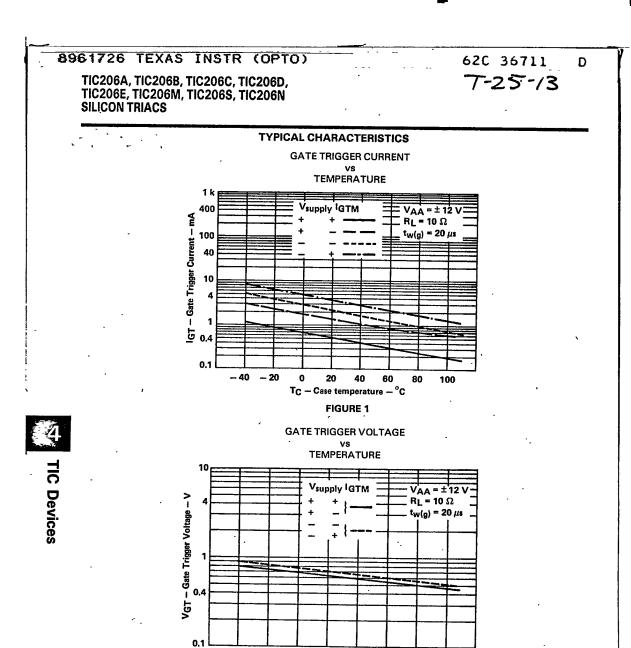
8961726 TEXAS INSTR (OPTO)

All voltages are with respect to Main Terminal 1.
 NOTES: 6. These parameters must be measured using pulse techniques, t_W ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts, separate from the current-carrying contacts, are located within 3,2 mm (1/8 inch) from the device body.
 7. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: R_G = 100 Ω, t_W = 20 μs, t_f ≤ 15 ns, t_f ≤ 15 ns, t ≤ 15 hs, t ≤ 15 ns, t

thermal characteristics

PARAMETER	MIN	TYP	MAX	UNIT	l
Rejc			7.8	°C/W	l
R _{ØJA}			62.5	L	J

Devices


1283

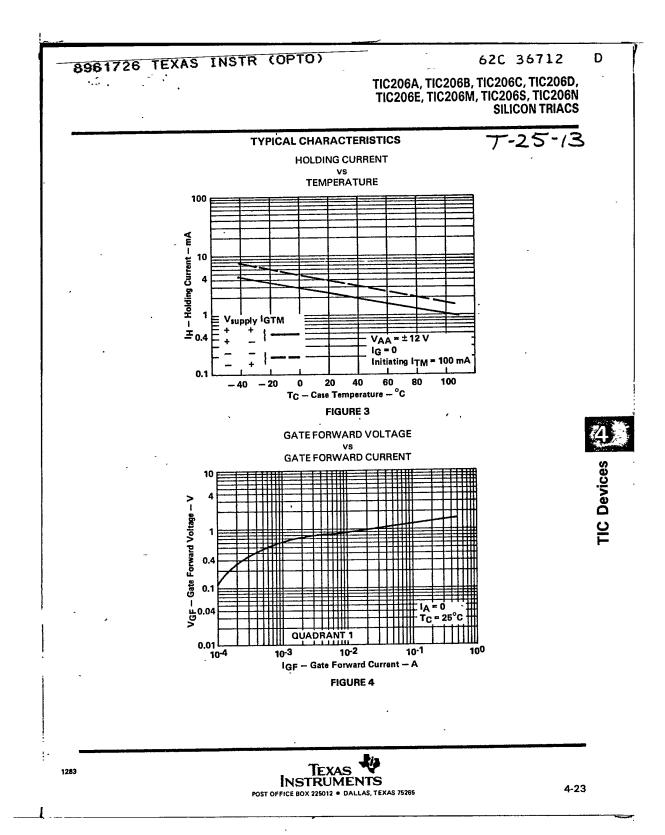
Texas Instruments

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

4-21

and the second of the control of the

4-22



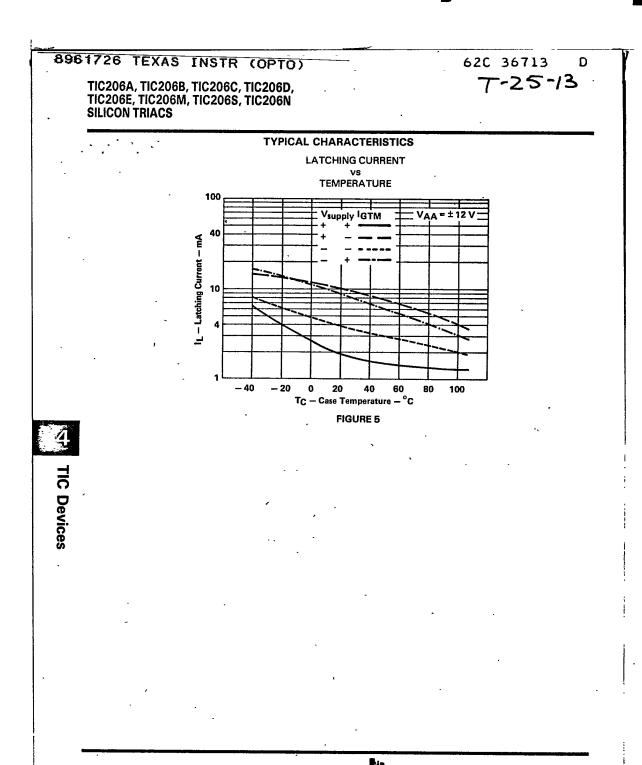

U 20 40 60 TC — Case Temperature — °C

FIGURE 2

100

1283

Texas INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

4-24