SWITCHMODE™NPN Silicon Power Transistors

The BUX85 is designed for high voltage, high speed power switching applications like converters, inverters, switching regulators, motor control systems.

Features

- V_{CEO(sus)} 450 V
- V_{CES(sus)} 1000 V
- Fall time = $0.3 \mu s$ (typ) at $I_C = 1.0 A$
- $V_{CE(sat)} = 1.0 \text{ V (max)}$ at $I_C = 1.0 \text{ A}$, $I_B = 0.2 \text{ A}$
- Pb-Free Package is Available*

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector-Emitter Voltage		V _{CEO(sus)}	450	Vdc
Collector–Emitter Voltage		V _{CES}	1000	Vdc
Emitter-Base Voltage		V _{EBO}	5	Vdc
Collector Current – Continue – Peak (N		I _C I _{CM}	2 3.0	Adc
Base Current – Continue – Peak (N		I _B I _{BM}	0.75 1.0	Adc
Reverse Base Current – Peak		I _{BM}	1	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C		P _D	50 400	W W/°C
Operating and Storage Junction Temperature Range		T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	TL	275	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

ON Semiconductor®


http://onsemi.com

2.0 AMPERES
POWER TRANSISTOR
NPN SILICON
450 VOLTS, 50 WATTS

TO-220AB CASE 221A-09 STYLE 1

MARKING DIAGRAM

BUX85 = Device Code A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BUX85	TO-220	50 Units / Rail
BUX85G	TO-220 (Pb-Free)	50 Units / Rail

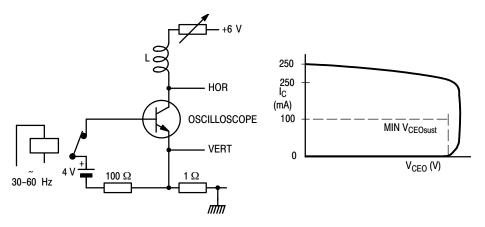
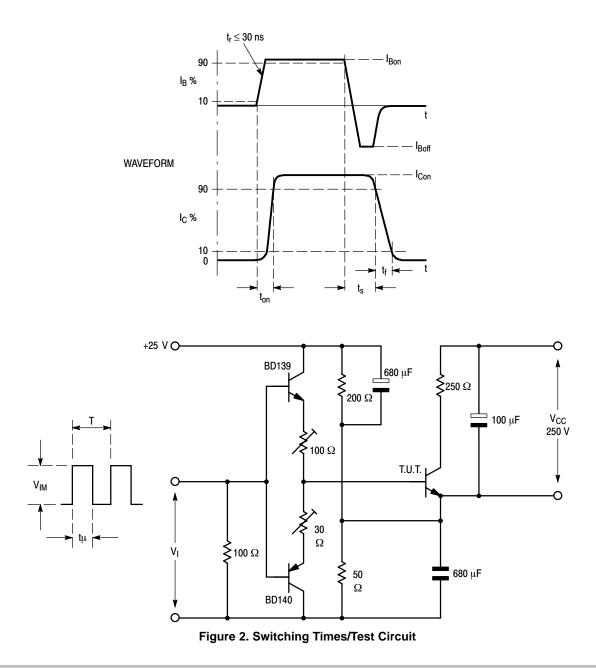
Reference Manual, SOLDERRM/D.

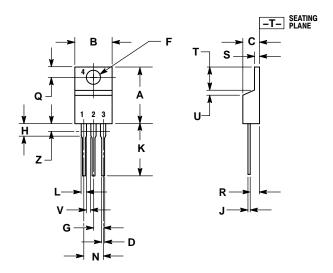
^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERIST	TCS (Note 2)	·				
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc, (L = 25 mH) See Figure 1		V _{CEO(sus)}	450	_	-	Vdc
Collector Cutoff Current (V _{CES} = Rated Value) (V _{CES} = Rated Value, T _C = 125°C)		I _{CES}	- -	_ _ _	0.2 1.5	mAdc
Emitter Cutoff Current (V _{EB} = 5 Vdc, I _C = 0)		I _{EBO}	-	_	1	mAdc
ON CHARACTERISTI	CS (Note 2)	•				
DC Current Gain (I _C = 0.1 Adc, V _{CE} = 5 V)		h _{FE}	30	50	-	-
Collector–Emitter Saturation Voltage $(I_C = 0.3 \text{ Adc}, I_B = 30 \text{ mAdc})$ $(I_C = 1 \text{ Adc}, I_B = 200 \text{ mAdc})$		V _{CE(sat)}	_ _	_ _	0.8 1	Vdc
Base–Emitter Saturation Voltage (I _C = 1 Adc, I _B = 0.2 Adc)		V _{BE(sat)}	-	_	1.1	Vdc
DYNAMIC CHARACT	ERISTICS	•				
Current-Gain - Bandwidth Product (I _C = 500 mAdc, V _{CE} = 1 0 Vdc, f = 1 MHz)		f _T	4	_	-	MHz
SWITCHING CHARAC	CTERISTICS	•				
Turn-on Time	V _{CC} = 250 Vdc, I _C = 1 A I _{B1} = 0.2 A, I _{B2} = 0.4 A	t _{on}	_	0.3	0.5	μs
Storage Time		ts	_	2	3.5	μs
Fall Time	See Figure 2	t _f	_	0.3	_	μs
Fall Time	Same above cond. at T _C = 95°C	t _f	-	-	1.4	μs

^{2.} Pulse Test: PW = 300 μs, Duty Cycle ≦2%.


Figure 1. Test Circuit for V_{CEOsust}

http://onsemi.com

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
٦	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1:

PIN 1. BASE

- 2. COLLECTOR
- 3. EMITTER
- COLLECTOR

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.