January 2006

FAN1655 3A DDR Bus Termination Regulator

Description

The FAN1655 is a low-cost bi-directional LDO specifically designed for terminating DDR memory bus. It can both sink and source up to 2.1A continuous, 3A peak, providing enough current for most DDR applications. Load regulation meets the JEDEC spec, VTT = VREFOUT \pm 40mV.

The FAN1655 includes a buffered reference voltage capable of supplying up to 5mA current. On-chip thermal limiting provides protection against a combination of power overload and ambient temperature that would create an excessive junction temperature. A shutdown input puts the FAN1655 into a low power mode.

The FAN1655 regulator is available in a power-enhanced eTSSOPTM-16, standard SOIC-14, and an 8-Lead MLP package.

Features

- Sinks and sources 2.1A continuous, 3A peak
- 0 to +125°C operating temperature range
- 5mA Buffered VREFOUT = VDDQ/2
- Load regulation: VTT = VREFOUT ± 40mV
- On-chip thermal limiting
- Low Cost SO-14, Power-Enhanced eTSSOP or 8-pin 5x6mm MLP packages
- Low-Current Shutdown Mode
- Output Short Circuit Protection

Applications

DDR Terminator VTT supply

Ordering Information					
Part Number	Temperature Range	Package	Packing		
FAN1655M	0°C to 125°C	SOIC-14	Rails		
FAN1655MX	0°C to 125°C	SOIC-14	Tape and Reel		
FAN1655MTF	0°C to 125°C	eTSSOP-16	Rails		
FAN1655MTFX	0°C to 125°C	eTSSOP-16	Tape and Reel		
FAN1655MPX	0°C to 125°C	MLP-8	Tape and Reel		

Block Diagram

8

PAD

15

9, 16 PAD 14

VDDQ

NC

VTT and VREFOUT.

No Internal Connection

Connect PAD to Vss Ground Plane

VDDQ Input. Attach this pin to the VDDQ supply to generate

Absolute Maximum Ratings			
Supply Voltage VDD, VDDQ		6V	
Junction Temperature, T _J	150°C		
Storage Temperature	-65 to 150°C		
Lead Soldering Temperature, 10 second	ls	300°C	
Power Dissipation, P _D	FAN1655M (SOIC-14)	1.4W	
	FAN1655MTF (e-TSSOP) FAN1655MP (MLP)	See "Power Dissipation and Derating"	

Recommended Operating Conditions

Parameter	Conditions	Min.	Тур.	Max.	Units
Supply Voltage VDD		2.3	2.5	3.6	V
Supply Voltage VDDQ		2.2	2.5	3.0	V
Ambient Operating Temperature		0		125	°C
VREFIN		1.1	1.25	1.5	V

Electrical Characteristics

(VDD = VDDQ = $2.5V \pm 0.2V$, and T_A = 25° C using circuit in Figure 1, unless otherwise noted.) The • denotes specifications which apply over the specified operating temperature range.

Parameter	Conditions			Тур.	Max.	Units
VTT Output Voltage	I _{OUT} = 0A, VREFIN = open					
	VDDQ = 2.3	V .	1.135	1.150	1.165	V
	VDDQ = 2.5		1.235	1.250	1.265	V
	VDDQ = 2.7	V •	1.335	1.350	1.365	V
	$I_{OUT} = \pm 2.1A$, VREFIN = open					.,
	VDDQ = 2.3		1.110	1.150	1.190	V
	VDDQ = 2.5		1.210	1.250	1.290	V
	VDDQ = 2.7	V	1.310	1.350	1.390	V
VTT Output Slew Rate	Cload = 10µF			0.3		V/µS
VTT Leakage Current	SHDN = 0V	•	-50		50	μA
VTT Current Limit			±3.1			Α
VREFIN Input Impedance				100		KΩ
VREFOUT Output Voltage	No load					
	VREFIN = 1.150	V •	1.145	1.150	1.155	V
	VREFIN = 1.250	V •	1.245	1.250	1.255	V
	VREFIN = 1.350	V •	1.345	1.350	1.355	V
VREFOUT Output Current	VDDQ = 2.3V	•	-5		5	mA
VREFOUT Leakage Current	SHDN = 0V	•	-10		10	μA
SHDN Logic High		•	1.667			V
SHDN Logic Low		•			0.800	V
IDD Supply Current	No load, SHDN = 2.7V	•		7.5	20	mA
VDDQ Leakage Current	SHDN = 0V	•		6	10	μA
VDD Leakage Current	SHDN = 0V	•		3	50	μA
SHDN Input Current	SHDN = 2.7V	•		50	75	μA
Over-Temperature Shutdown				155		°C
Over-Temperature Hysteresis				30		°C

Applications Information

Output Capacitor selection

The JEDEC specification for DDR termination requires that VTT stay within \pm 40mV of VREF, which must track VDDQ/2 within 1%. During the initial load transient, the output capacitor keeps the output within spec. To stay within the 40mV window, the "load step" due to the load transient current dropping across the output capacitor's ESR should be kept to around 25mV: where ESR <

 $\frac{25}{\Delta I}$ is given in mΩ, and ΔI is the maximum load current.

For example, to handle a 3A maximum load transient, the ESR should be no greater than $8m\Omega$. Furthermore, the output capacitor must be able to hold the load in spec while the regulator recovers (about 15µS). A minimum value of 470µF is recommended.

The FAN1655 requires a minimum of $100\mu F$ of input capacitance with a maximum ESR value of $100m\Omega$ to insure stability.

Power Dissipation and Derating

The maximum output current (sink or source) for a 1.25V output is:

$$I_{OUT(MAX)} = \frac{P_{D(MAX)}}{1.25}$$

where $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})}$ is the maximum power dissipation which is:

$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = \frac{\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}}{\theta_{\mathsf{I}\mathsf{A}}}$$

where $T_{J(MAX)}$ is the maximum die temperature of the IC and T_A is the operating ambient temperature.

FAN1655 has an internal thermal limit at 150°C, which defines $T_{J(MAX)}$. For the SOIC-14 package, θ_{JA} is given at 88°C/W. Using equation 2, the maximum dissipation at $T_A = 25^{\circ}$ C is 1.4W, which is its rated maximum dissipation.

The e-TSSOP or MLP package, however, use the PCB copper to cool the IC through the thermal pad on the package bottom. For maximum dissipation, this pad should be soldered to the PCB copper, with as much copper area as possible surrounding it to cool the package. Thermal vias should be placed as close to the thermal pad as possible to transfer heat to other layers of copper on the PCB. With large areas of PCB copper for heat sinking, a θ_{JA} of under 40°C/W can easily be achieved.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] CROSSVOLT [™] DOME [™]	FAST [®] FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™]
EcoSPARK™ E ² CMOS™ EnSigna™ FACT™ FACT Quiet Serie	I²C™ <i>i-Lo</i> ™ ImpliedDisconnect™ IntelliMAX™	MSXPro [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™]	RapidConnect™ µSerDes™ ScalarPump™ SILENT SWITCHER [®] SMART START™ SPM™	UltraFET [®] UniFET™ VCX™ Wire™
Across the board The Power Franc Programmable Ac		PACMAN [™] POP™ Power247™ PowerEdge™	Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 117