GENERAL PURPOSE HIGH ISOLATION VOLTAGE SINGLE TRANSISTOR TYPE PHOTOCOUPLER SERIES ### **FEATURES** - 1.Lead forming (gull wing) type, for surface mounting. - 2. High isolation voltage between input and output (Viso=5000 Vrms). - 3.Compact dual-in-line package - KB837-B: 3-channel type. - 4. Recognized by UL and CUL, file NO. E225308. - 5. Approved by VDE 0884 Teil2(NO:40006364) (Creepage distance between input and output:7mm or more). #### DESCRIPTION - 1.The KB837-B (3-channel) is optically coupled isolators containing a GaAS light emitting diode and an NPN silicon phototransistor. - 2.The lead pitch is 2.54mm. - 3.Solid insulation thickness between emitting diode and output phototransistor:>=0.6mm. ### **APPLICATIONS** - 1.Computer terminals. - 2. Registers, copiers, automatic vending machines. - 3. System appliances, measuring instruments. - 4. Programmable logic controller. - 5. Signal transmission between circuits of different potentials and impedances. SPEC NO: DS AD1555 REV NO: V.2 DATE: MAY/25/2003 PAGE: 1 OF 7 APPROVED: J. Lu CHECKED: Tracy Deng DRAWN: Y.H.LI # *PACKAGE DIMENSIONS (UNIT:mm) **Lead Bending Type** TOLERANCE: ±0.5[±0.02] UNLESS OTHERWISE NOTED. 1, 3, 5. Anode 2, 4, 6. Cathode 7, 9, 11. Emitter 8, 10, 12. Collector ## *Absolute Maximum Ratings (Ta=25°C) | | Parameter | Symbol | Rating | Unit | |------------------------------------|-----------------------------|------------------|----------|------| | Input | Forward current | I _F | 50 | mA | | | Reverse voltage | V _R | 6 | V | | | Power dissipation | Р | 70 | mW | | Output | Collector-emitter voltage | V _{CEO} | 35 | V | | | Emitter-collector voltage | V _{ECO} | 6 | V | | | Collector current | I _c | 50 | mA | | | Collector power dissipation | P _C | 150 | mW | | Total power dissipation | | Ptot | 200 | mW | | ¹¹ Isolation voltage | | Viso | 5000 | Vrms | | Operating temperature | | Topr | -30~+100 | °C | | Storage temperature | | Tstg | -55~+125 | °C | | ² Soldering temperature | | Tsol | 260 | °C | $^{^{*1}}$ 40 to 60% RH,AC for 1 minute. ^{*2} For 10 seconds. # *Electro-optical Characteristics | Parameter | | Symbol | Conditions | Min. | Тур. | Max. | Unit | | |----------------------------------|----------------------|--------------------|------------|---|------|------|------------------|-----| | Input | Forward voltage | | VF | I _F =20mA | | 1.2 | 1.4 | V | | | Peak forward voltage | | VFM | IFM=0.5A | | | 3.0 | V | | | Reverse current | | l R | V _R =4V | | | 10 | μΑ | | Output | Collector dark cur | rent | ICEO | Vce=20V,IF=0mA | | | 10 ⁻⁷ | nA | | Transfer
charact-
eristics | *1Current transfer i | ratio | CTR | IF=5mA,VcE=5V | 50 | | 600 | % | | | Collector-emitter s | saturation voltage | VCE(sat) | I _F =20mA, I _C =1mA | | 0.1 | 0.2 | V | | | Cut-off frequency | | fc | VcE=5V, lc=2mA
RL=100Ω,-3dB | | 80 | | KHz | | | Response time | Rise time | tr | VcE=2V, lc=2mA
RL=100Ω | | 4 | 18 | μs | | | | Fall time | tf | | | 3 | 18 | μs | ^{*1} Classification table of current transfer ratio is shown below. $$CTR = \frac{Ic}{I_F} \times 100\%$$ | Model No. | Rank mark | CTR(%) | |-----------|----------------------|------------| | KB837L-B | L | 50 to 100 | | KB837A-B | А | 80 to 160 | | KB837B-B | В | 130 to 260 | | KB837C-B | С | 200 to 400 | | KB837D-B | D | 300 to 600 | | KB837AB-B | A or B | 80 to 260 | | KB837BC-B | B or C | 130 to 400 | | KB837CD-B | C or D | 200 to 600 | | KB837AC-B | A,B or C | 80 to 400 | | KB837BD-B | B,C or D | 130 to 600 | | KB837AD-B | A,B,C or D | 80 to 600 | | KB837-B | L,A,B,C,D or No mark | 50 to 600 | Fig. 1 Current Transfer Ratio vs. Forward Current Fig. 2 Forward Current vs. Forward voltage Fig. 3 Collector Current vs. Collector-emitter Voltage Fig. 4 Relative Current Transfer Ratio vs. Ambient Temperature Fig. 5 Collector-emitter Saturation Voltage vs. Ambient Temperature Fig. 6 Collector Dark Current vs. Ambient Temperature Fig. 7 Forward Current vs. Ambient Temperature Fig. 8 Collector Power Dissipation vs. Ambient Temperature Fig. 9 Response Time vs. Load Resistance **Test Circuit for Response Time** Fig. 10 Frequency Response **Test Circuit for Frequency Response** SPEC NO: DS AD1555 REV NO: V.2 DATE: MAY/25/2003 PAGE: 5 OF 7 APPROVED: J. Lu CHECKED: Tracy Deng DRAWN: Y.H.LI PAGE: 6 OF 7 KB837-B Fig. 11 Collector-emitter Saturation Voltage vs. Forward Current ### *NOTES ON HANDLING ### 1.Recommended soldering conditions (Dip soldering) ## (1) Dip soldering Temperature 260°C or below (molten solder temperature) Time Less than 10 seconds. Cycle One cycle allowed to be dipped in solder including plastic mold portion. Flux Rosin flux containing small amount of chorine (The flux with a maximum chlorine content of 0.2 Wt % is recommended.) ## (2) Cautions Fluxes Avovid removing the residual flux with freon-based and chlorine-based cleaning solvent. ### 2. Cautions regarding noise Be aware that power is suddenly into the componment any surge current may cause damage happen, even if the voltage is within the absolute maximum ratings. #### **NOTES ON HANDLING** - 1.Recommended soldering conditions - (1). Infrared reflow soldering - •Peak reflow temperature - •Time of temperature higher than 210°C - Number or reflows - ●Flux 235°C or below (package surface temperature) 30 seconds or less Three Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2Wt% is recommended.) ### **CAUTION** Within this device there exists GaAs (Gallium Arsenide) material which is a harmful substance if ingested. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. #### RESTRICTIONS ON PRODUCT USE - The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices / types available in every country. - We are mention about our product quality stablity, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing KINGBRIGHT products, to observe standards of safety, and to a avoid situations in which a malfunction or failure of a KINGBRIGHT product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that KINGBRIGHT products are used within specified operating ranges as set forth in the most recent products specifications. SPEC NO: DS AD1555 REV NO: V.2 DATE: MAY/25/2003 PAGE: 7 OF 7 APPROVED: J. Lu CHECKED: Tracy Deng DRAWN: Y.H.LI