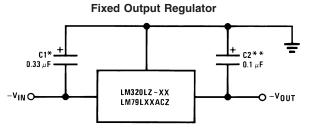


LM320L/LM79LXXAC Series 3-Terminal Negative Regulators

General Description

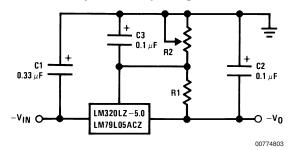
The LM320L/LM79LXXAC dual marked series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V with output current capabilities in excess of 100mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of $0.1\mu\text{F},$ exhibits an excellent transient response, a maximum line regulation of $0.07\%~\text{V}_{\text{O}}/\text{V},$ and a maximum load regulation of $0.01\%~\text{V}_{\text{O}}/\text{mA}.$

The LM320L/LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead


TO-92 package, 8-lead SOIC package, and the 6-Bump micro SMD package. The LM320L series is available in the 3-lead TO-92 package.

For output voltage other than -5V, -12V and -15V, the LM137L series provides an output voltage range from 1.2V to 47V.

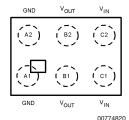
Features


- Preset output voltage error is less than ±5% overload, line and temperature
- Specified at an output current of 100mA
- Easily compensated with a small 0.1µF output capacitor
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OUT}/V
- Maximum load regulation less than 0.01% V_{OUT}/mA
- See AN-1112 for micro SMD considerations

Typical Applications

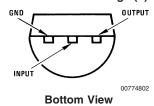
 0077480 *Required if the regulator is located far from the power supply filter. A 1 μ F

Adjustable Output Regulator



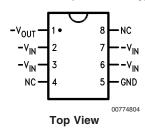
 $-V_0 = -5V - (5V/R1 + I_Q) \cdot R2,$ 5V/R1 > 3 I_Q

Connection Diagrams


aluminum electrolytic may be substituted.

6-Bump micro SMD

Bump Side Down


TO-92 Plastic Package (Z)

^{**}Required for stability. A 1µF aluminum electrolytic may be substituted.

Connection Diagrams (Continued)

SO-8 Plastic (Narrow Body)

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing		
8-Lead SOIC	LM79L05ACM	LM79L05ACM	95 Units/Rail	M08A		
	LM79L05ACMX		2.5k Units Tape and Reel			
	LM79L12ACM	LM79L12ACM	95 Units/Rail			
	LM79L12ACMX		2.5k Units Tape and Reel			
	LM79L15ACM	LM79L15ACM	95 Units/Rail			
	LM79L15ACMX		2.5k Units Tape and Reel			
3-Pin TO-92	LM79L05ACZ	320L79L05	1800 Units Per Box	Z03A		
	LM79L12ACZ	320L79L12	1800 Units Per Box			
	LM79L15ACZ	320L79L15	1800 Units Per Box			
6-Bump	LM79L15ACTL	XTPB	250 Units Tape and Reel	TLA06AMA		
micro SMD	LM79L05ACTLX		3k Units Tape and Reel			

www.national.com 2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

 $V_O = -5V, -12V, -15V$ -35V

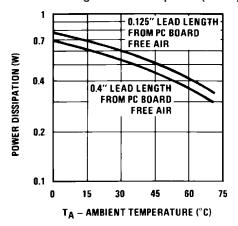
Internal Power Dissipation (Note 2) Internally Limited

Operating Temperature Range 0°C to $+70^{\circ}\text{C}$ Maximum Junction Temperature $+125^{\circ}\text{C}$ Storage Temperature Range -55°C to $+150^{\circ}\text{C}$ Lead Temperature (Soldering, 10 sec.) 260°C

Electrical Characteristics (Note 3)

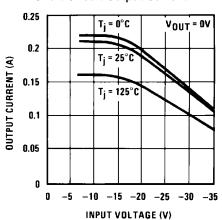
 $T_A = 0$ °C to +70°C unless otherwise noted.

Output Voltage			-5V		-12V			-15V				
Input Voltage (unless otherwise noted)		-10V		-17V			-20V		Units			
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
V _O	Output Voltage	$T_J = 25^{\circ}C, I_O = 100 \text{mA}$	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	
		$1\text{mA} \le I_{O} \le 100\text{mA}$	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	$(-20 \le V_{IN} \le -7.5)$		-7.5)	(–27	$(-27 \le V_{IN} \le -14.8)$		$(-30 \le V_{IN} \le -18)$		V	
		$1mA \le I_O \le 40mA$	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN} \leq$	≤ –7)	(–27	\leq $V_{IN} \leq$	-14.5)	(–30 :	≤ V _{IN} ≤	-17.5)	
ΔV_{O}	Line Regulation	$T_J = 25^{\circ}C, I_O = 100mA$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20 :	≤ V _{IN} ≤	-7.3)	(–27	\leq $V_{IN} \leq$	-14.6)	(-30 :	≤ V _{IN} ≤	-17.7)	V
		$T_J = 25^{\circ}C, I_O = 40mA$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	$\leq V_{IN} \leq$	≤ –7)	(–27	\leq $V_{IN} \leq$	-14.5)	(–30 :	≤ V _{IN} ≤	-17.5)	V
ΔV_{O}	Load Regulation	$T_J = 25^{\circ}C$			50			100			125	mV
		1mA ≤ I _O ≤ 100mA										
ΔV_{O}	Long Term Stability	I _O = 100mA		20			48			60		mV/khrs
IQ	Quiescent Current	I _O = 100mA		2	6		2	6		2	6	mA
ΔI_{Q}	Quiescent Current	1mA ≤ I _O ≤ 100mA			0.3			0.3			0.3	
	Change	$1mA \le I_O \le 40mA$			0.1			0.1			0.1	mA
		I _O = 100mA			0.25			0.25			0.25	mA
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20 :	≤ V _{IN} ≤	-7.5)	(–27	$\leq V_{IN} \leq$	-14.8)	(-30	$\leq V_{IN} \leq$	≤ –18)	V
V _n	Output Noise Voltage	$T_J = 25^{\circ}C, I_O = 100mA$		40			96			120		μV
		f = 10Hz - 10kHz										
ΔV_{IN}	Ripple	$T_J = 25^{\circ}C, I_O = 100mA$	50			52			50			dB
ΔVO	Rejection	f = 120Hz										
	Input Voltage	$T_J = 25^{\circ}C, I_O = 100mA$			-7.3			-14.6			-17.7	V
	Required to	I _O = 40mA			-7.0			-14.5			-17.5	V
	Maintain Line											
	Regulation											

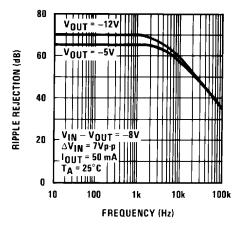

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

Note 2: Thermal resistance of Z package is 60°C/W θ_{JC} , 232°C/W θ_{JA} at still air, and 88°C/W at 400 ft/min of air. The M package θ_{JA} is 180°C/W in still air. The maximum junction temperature shall not exceed 125°C on electrical parameters.

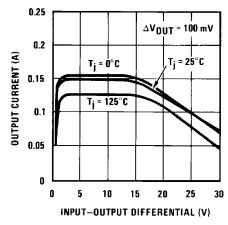
Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.


Typical Performance Characteristics

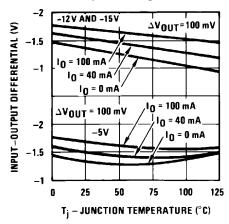
Maximum Average Power Dissipation (TO-92)


00774811

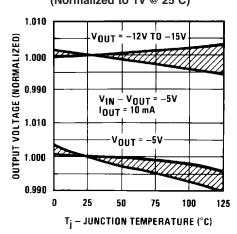
Short Circuit Output Current


00774813

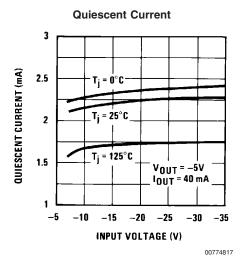
Ripple Rejection

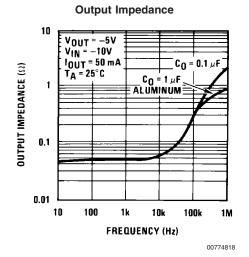

00774815

Peak Output Current

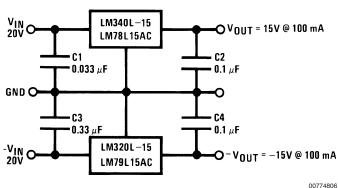

00774812

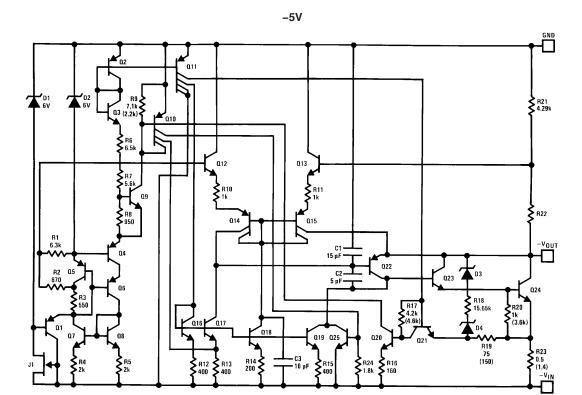
Dropout Voltage

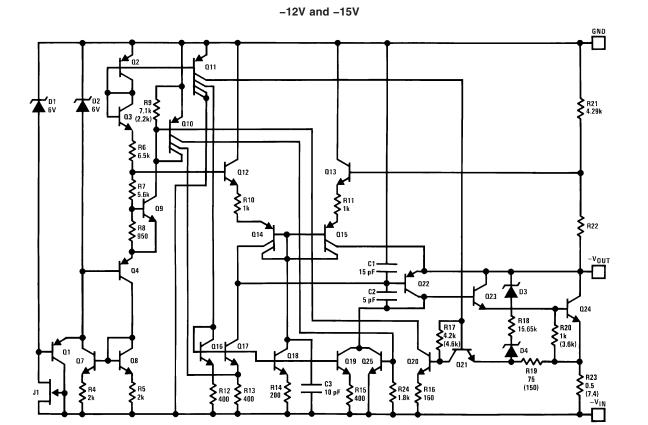

00774814


Output Voltage vs. Temperature (Normalized to 1V @ 25°C)

00774816

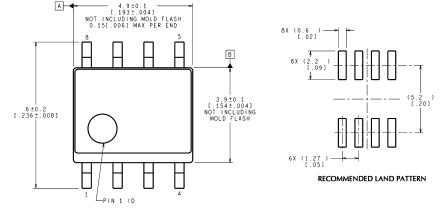

Typical Performance Characteristics (Continued)

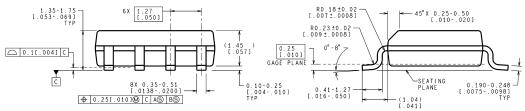

Typical Applications


±15V, 100mA Dual Power Supply

5 www.national.com

Schematic Diagrams

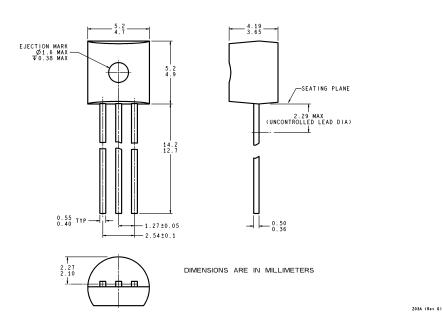



00774809

00774810

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted



CONTROLLING DIMENSION IS MILLIMETER VALUES IN [] ARE INCHES
DIMENSIONS IN () FOR REFERENCE ONLY

M08A (Rev K)

SOIC Package (M)
NS Package Number M08A

Molded Offset TO-92 (Z) NS Package Number Z03A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TLA06XXX (Rev C)

NOTES: UNI ESS OTHERWISE SPECIFIED

- 1. EPOXY COATING.
- 2. 63Sn/67Pb EUTECTIC BUMP.
- 3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
- 4. PIN A1 ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.
- 5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.
- 6. REFERENCE JEEC REGISTRATION MO-211, VARIATION BC.

6-Bump micro SMD **NS Package Number TLA06AMA** $X_1 = 1006 \mu m$ $X_2 = 1793 \mu m$ $X_3 = 600 \mu m$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com

National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560