21MHz

LM8262 Dual RRIO, High Output Current & Unlimited Cap Load Op Amp in MSOP

General Description

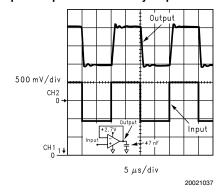
The LM8262 is a Rail-to-Rail input and output Op Amp which can operate with a wide supply voltage range. This device has high output current drive, greater than Rail-to-Rail input common mode voltage range, unlimited capacitive load drive capability, and provides tested and guaranteed high speed and slew rate. It is specifically designed to handle the requirements of flat panel TFT panel $V_{\rm COM}$ driver applications as well as being suitable for other low power, and medium speed applications which require ease of use and enhanced performance over existing devices.

Greater than Rail-to-Rail input common mode voltage range with 50dB of Common Mode Rejection, allows high side and low side sensing, among many applications, without having any concerns over exceeding the range and no compromise in accuracy. In addition, most device parameters are insensitive to power supply variations; this design enhancement is yet another step in simplifying its usage. The output stage has low distortion (0.05% THD+N) and can supply a respectable amount of current (15mA) with minimal headroom from either rail (300mV).

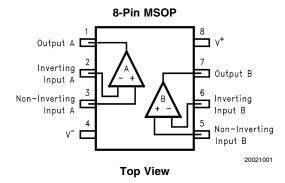
The LM8262 is offered in the space saving MSOP package.

Features

■ GBWP


 $(V_S = 5V, T_A = 25^{\circ}C, Typical values unless specified).$

■ Wide supply voltage range 2.5V to 22V 12V/µs ■ Slew rate ■ Supply current/channel 1.15 mA Unlimited ■ Cap load limit +53mA/-75mA Output short circuit current 400ns (500pF, 100mV_{PP} step) ■ +/-5% Settling time 0.3V beyond rails Input common mode voltage 15nV/ √Hz ■ Input voltage noise 1pA/√Hz ■ Input current noise < 0.05% ■ THD+N


Applications

- TFT-LCD flat panel V_{COM} driver
- A/D converter buffer
- High side/low side sensing
- Headphone amplifier

Output Response with Heavy Capacitive Load

Connection Diagram

Ordering Information

Package Part Number		Package Marking	Media Transport NSC Dr 1k Units Tape and Reel				
8-Pin MSOP	LM8262MM	A46	1k Units Tape and Reel	MUA08A			
	LM8262MMX	A40	3.5k Units Tape and Reel	IVIOAUGA			

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance $2KV \text{ (Note 2)} \\ 200V(\text{Note 9}) \\ V_{\text{IN}} \text{ Differential} \\ +/-10V \\ \text{Output Short Circuit Duration} \\ \text{Supply Voltage (V}^+ - V^-) \\ \text{Voltage at Input/Output pins} \\ \text{Storage Temperature Range} \\ \text{Junction Temperature (Note 4)} \\ 2KV \text{ (Note 2)} \\ \text{(Note 3)} \\ \text{(Notes 3, 11)} \\ \text{24V} \\ \text{Voltage at Input/Output pins} \\ \text{V}^+ + 0.8V, V^- - 0.8V \\ \text{Storage Temperature Range} \\ \text{-}65^{\circ}\text{C to } +150^{\circ}\text{C} \\ \text{Junction Temperature (Note 4)} \\ \text{+}150^{\circ}\text{C} \\ \text{-}2000 \text{ (Note 2)} \\ \text{-}2000 \text{ (Note 2)} \\ \text{-}2000 \text{ (Note 3)} \\ \text{-}2000 \text$

Soldering Information:

Infrared or Convection (20 sec.) 235°C Wave Soldering (10 sec.) 260°C

Operating Ratings

Supply Voltage (V $^+$ - V $^-$) 2.5V to 22V Junction Temperature Range(Note 4) $-40\,^{\circ}$ C to $+85\,^{\circ}$ C Package Thermal Resistance, θ_{JA} ,(Note 4) 8-Pin MSOP 235 $^{\circ}$ C/W

2.7V Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = 0.5V, V_O = V⁺/2, and R_L > 1M Ω to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	_	+/-0.7	+/-5 +/-7	mV
TC V _{OS}	Input Offset Average Drift	V _{CM} = 0.5V & V _{CM} = 2.2V (Note 12)	_	+/-2	_	μV/C
I _B	Input Bias Current	V _{CM} = 0.5V (Note 7)	-	-1.20	-2.00 -2.70	
		V _{CM} = 2.2V (Note 7)	_	+0.49	+1.00 +1.60	μΑ
l _{os}	Input Offset Current	$V_{CM} = 0.5V \& V_{CM} = 2.2V$	-	20	250 400	nA
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from 0V to 1.0V	76 60	100	-	
		V _{CM} stepped from 1.7V to 2.7V	_	100	_	dB
		V _{CM} stepped from 0V to 2.7V	58 50	70	-	
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 2.7V to 5V	78 74	104	-	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-	-0.3	-0.1 0.0	V
			2.8 2.7	3.0	-	V
A _{VOL}	Large Signal Voltage Gain	$V_{\rm O} = 0.5 \text{ to } 2.2V,$ $R_{\rm L} = 10 \text{k to } V^{-}$	70 67	78	-	dB
		$V_{O} = 0.5 \text{ to } 2.2V,$ $R_{L} = 2k \text{ to } V^{-}$	67 63	73	-	dB
Vo	Output Swing High	$R_L = 10k \text{ to } V^-$	2.49 2.46	2.59	-	V
		R _L = 2k to V ⁻	2.45 2.41	2.53	-	
	Output Swing Low	$R_L = 10k \text{ to } V^-$	_	90	100 120	mV
I _{sc}	Output Short Circuit Current	Sourcing to V ⁻ V _{ID} = 200mV (Note 10)	30 20	48	-	4
		Sinking to V ⁺ V _{ID} = -200mV (Note 10)	50 30	65	-	mA

2.7V Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for T_J = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = 0.5V, V_O = V⁺/2, and R_L > 1M Ω to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
Is	Supply Current (both amps)	No load, V _{CM} = 0.5V	-	2.0	2.5	mA
					3.0	
SR	Slew Rate (Note 8)	$A_V = +1, V_I = 2V_{PP}$	-	9	-	V/µs
f _u	Unity Gain-Frequency	$V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega \text{ to V}^+/2$	-	10	-	MHz
GBWP	Gain Bandwidth Product	f = 50KHz	15.5	21	-	MHz
			14			
Phi _m	Phase Margin	V _I = 10mV	-	50	-	Deg
e _n	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	_	15	_	nV/√Hz
i _n	Input-Referred Current Noise	f = 2KHz	_	1	-	pA/ _{√Hz}
f _{max}	Full Power Bandwidth	$Z_{L} = (20pF 10k\Omega) \text{ to V}^{+}/2$	_	1	-	MHz

5V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 1V$, $V_O = V^+/2$, and $R_L > 1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = 1V \& V_{CM} = 4.5V$	_	+/-0.7	+/-5 +/- 7	mV
TC V _{OS}	Input Offset Average Drift	V _{CM} = 1V & V _{CM} = 4.5V (Note 12)	-	+/-2	-	μV/°C
I _B	Input Bias Current	V _{CM} = 1V (Note 7)	-	-1.18	-2.00 - 2.70	
		V _{CM} = 4.5V (Note 7)	-	+0.49	+1.00 + 1.60	μΑ
l _{os}	Input Offset Current	V _{CM} = 1V & V _{CM} = 4.5V	-	20	250 400	nA
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from 0V to 3.3V	84 72	110	-	
		V _{CM} stepped from 4V to 5V	_	100	-	dB
		V _{CM} stepped from 0V to 5V	64 61	80	_	
+PSRR	Positive Power Supply Rejection Ratio	$V^{+} = 2.7V \text{ to 5V}, V_{CM} = 0.5V$	78 74	104	-	dB
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-	-0.3	-0.1 0.0	V
			5.1 5.0	5.3	_	V
A _{VOL}	Large Signal Voltage Gain	$V_{O} = 0.5 \text{ to } 4.5V,$ $R_{L} = 10k \text{ to } V^{-}$	74 70	84	_	dB
		$V_{\rm O} = 0.5 \text{ to } 4.5 \text{V},$ $R_{\rm L} = 2 \text{k to V}^{-}$	70 66	80	-	иь
V _O	Output Swing High	R _L = 10k to V ⁻	4.75 4.72	4.87	-	
		R _L = 2k to V ⁻	4.70 4.66	4.81	-	V
	Output Swing Low	R _L = 10k to V ⁻	_	86	125 135	mV

5V Electrical Characteristics (Continued)

Unless otherwise specified, all limited guaranteed for $T_J=25^{\circ}C$, $V^+=5V$, $V^-=0V$, $V_{CM}=1V$, $V_O=V^+/2$, and $R_L>1M\Omega$ to V^- . **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
I _{sc}	Output Short Circuit Current	Sourcing to V ⁻	35	53	_	
		V _{ID} = 200mV (Note 10)	20			A
		Sinking to V ⁺	60	75	_	mA
		$V_{ID} = -200 \text{mV} \text{ (Note 10)}$	50			
I _s	Supply Current (both amps)	No load, V _{CM} = 1V	_	2.3	2.8	mA
					3.5	
SR	Slew Rate (Note 8)	$A_{V} = +1, V_{I} = 5V_{PP}$	10	12	_	V/µs
			7			
f _u	Unity Gain Frequency	$V_I = 10 \text{mV},$	_	10.5	_	MHz
		$R_L = 2k\Omega$ to $V^+/2$				
GBWP	Gain-Bandwidth Product	f = 50KHz	16	21	-	MHz
			15			
Phi _m	Phase Margin	$V_I = 10mV$	_	53	-	Deg
e _n	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	-	15	-	nV/ √Hz
i _n	Input-Referred Current Noise	f = 2KHz	-	1	-	pA/ _{√Hz}
f _{max}	Full Power Bandwidth	$Z_{L} = (20pF 10k\Omega) \text{ to V}^{+}/2$	_	900	_	KHz
t _S	Settling Time (+/-5%)	100mV _{PP} Step, 500pF load	_	400	_	ns
THD+N	Total Harmonic Distortion +	$R_L = 1k\Omega$ to V ⁺ /2	-	0.05	-	%
	Noise	$f = 10KHz$ to $A_V = +2$, $4V_{PP}$ swing				

+/-11V Electrical Characteristics

Unless otherwise specified, all limited guaranteed for T_J = 25°C, V^+ = 11V, V^- = -11V, V_{CM} = 0V, V_O = 0V, and $R_L > 1 M \Omega$ to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = -10.5V \& V_{CM} = 10.5V$	-	+/-0.7	+/-7 + / - 9	mV
TC V _{OS}	Input Offset Average Drift	$V_{CM} = -10.5V \& V_{CM} = 10.5V$ (Note 12)	-	+/-2	_	μV/°C
I _B	Input Bias Current	V _{CM} = -10.5V (Note 7)	_	-1.05	-2.00 -2.80	
		V _{CM} = 10.5V (Note 7)	_	+0.49	+1.00 +1.50	μΑ
los	Input Offset Current	$V_{CM} = -10.5V \& V_{CM} = 10.5V$	-	30	275 550	nA
CMRR	Common Mode Rejection Ratio	V _{CM} stepped from –11V to 9V	84 80	100	_	
		V _{CM} stepped from 10V to 11V	_	100	-	dB
		V _{CM} stepped from –11V to 11V	74 72	88	-	
+PSRR	Positive Power Supply Rejection Ratio	V ⁺ = 9V to 11V	70 66	100	-	dB
-PSRR	Negative Power Supply Rejection Ratio	$V^- = -9V \text{ to } -11V$	70 66	100	_	dB

+/-11V Electrical Characteristics (Continued) Unless otherwise specified, all limited guaranteed for $T_J = 25\,^{\circ}\text{C}$, $V^+ = 11\text{V}$, $V^- = -11\text{V}$, $V_{\text{CM}} = 0\text{V}$, $V_{\text{O}} = 0\text{V}$, and $R_L > 1\text{M}\Omega$ to 0V. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Min (Note 6)	Typ (Note 5)	Max (Note 6)	Units
CMVR	Input Common-Mode Voltage Range	CMRR > 50dB	-	-11.3	-11.1 -11.0	V
			11.1 11.0	11.3	_	V
A _{VOL}	Large Signal Voltage Gain	$V_O = 0V \text{ to } +/-9V,$ $R_L = 10k\Omega$	78 74	85	-	dB
		$V_O = 0V \text{ to } +/-9V,$ $R_L = 2k\Omega$	72 66	79	-	ав
V _O	Output Swing High	$R_L = 10k\Omega$	10.65 10.61	10.77	-	V
		$R_L = 2k\Omega$	10.6 10.55	10.69	_	V
	Output Swing Low	$R_L = 10k\Omega$	-	-10.98	-10.75 -10.65	V
		$R_L = 2k\Omega$	-	-10.91	-10.65 -10.6	
I _{sc}	Output Short Circuit Current	Sourcing to ground V _{ID} = 200mV (Note 10)	40 25	60	_	A
		Sinking to ground V _{ID} = 200mV (Note 10)	65 55	100	_	mA mA
I _S	Supply Current	No load, V _{CM} = 0V	-	2.5	4 5	mA
SR	Slew Rate (Note 8)	$A_V = +1, V_I = 16V_{PP}$	10 8	15	-	V/µs
f _U	Unity Gain Frequency	$V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega$	_	13	-	MHz
GBWP	Gain-Bandwidth Product	f = 50KHz	18 16	24	-	MHz
Phi _m	Phase Margin	$V_I = 10mV$	_	58	_	Deg
e _n	Input-Referred Voltage Noise	$f = 2KHz$, $R_S = 50\Omega$	-	15	-	nV/ √Hz
i _n	Input-Referred Current Noise	f = 2KHz	-	1	_	pA/ _{√Hz}
t _S	Settling Time (+/-1%, A _V =	Positive Step, 5V _{PP}	_	320	-	ns
	+1)	Negative Step, 5V _{PP}		600	-	
THD+N	Total Harmonic Distortion +Noise	$R_L = 1k\Omega$, $f = 10KHz$, $A_V = +2$, $15V_{PP}$ swing	_	0.01	_	%
CT _{REJ}	Cross-Talk Rejection	f = 5MHz, Driver $R_L = 10k\Omega$	_	68	_	dB

+/-11V Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, $1.5k\Omega$ in series with 100pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 4: The maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

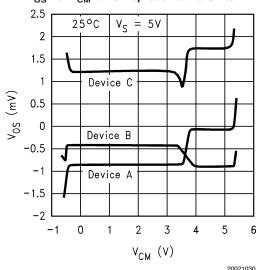
Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

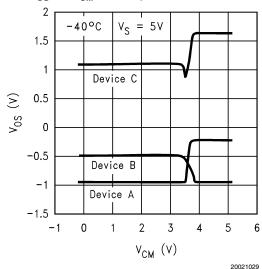
Note 7: Positive current corresponds to current flowing into the device.

Note 8: Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

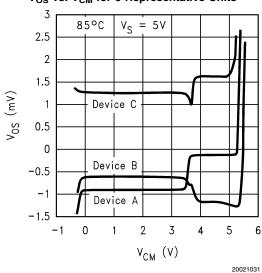
Note 9: Machine Model, 0Ω is series with 200pF.

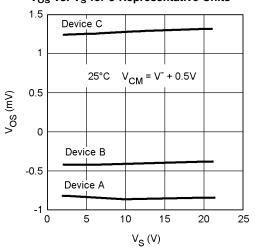

Note 10: Short circuit test is a momentary test. See Note 11.

Note 11: Output short circuit duration is infinite for $V_S \le 6V$ at room temperature and below. For $V_S > 6V$, allowable short circuit duration is 1.5ms.

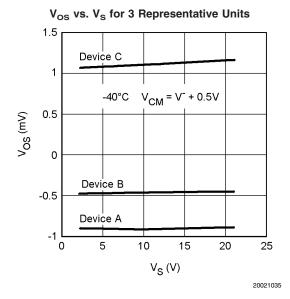

Note 12: Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.

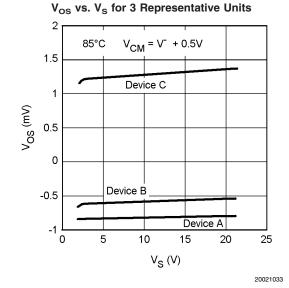
Typical Performance Characteristics T_A = 25°C, Unless Otherwise Noted

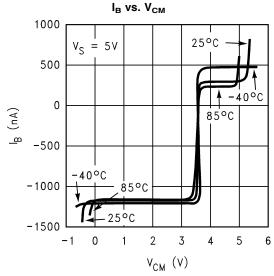


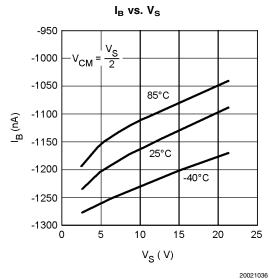

V_{OS} vs. V_{CM} for 3 Representative Units

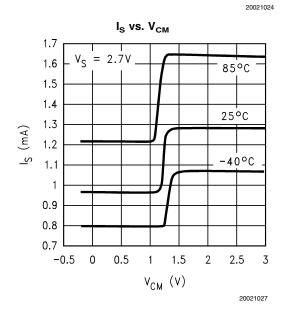
V_{OS} vs. V_{CM} for 3 Representative Units

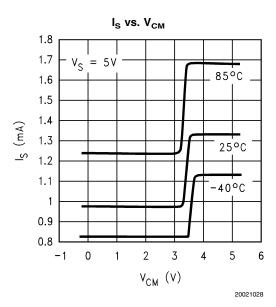


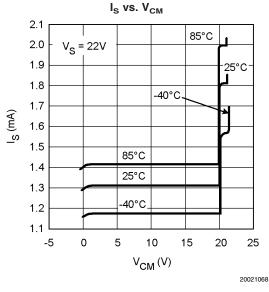

Vos vs. Vs for 3 Representative Units

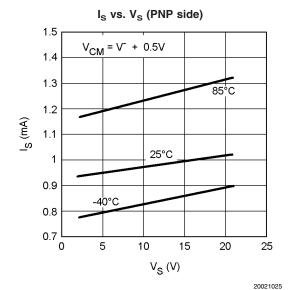


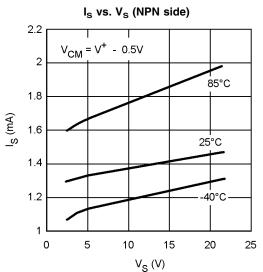

20021034

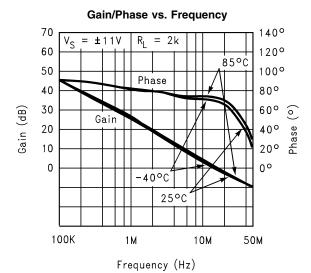

Typical Performance Characteristics $T_A = 25^{\circ}C$, Unless Otherwise Noted (Continued)

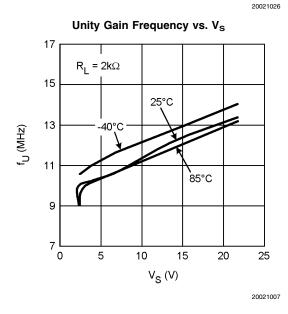


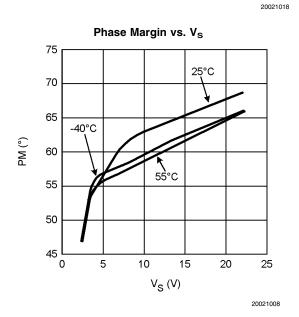


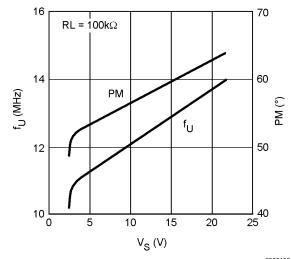







Typical Performance Characteristics T_A = 25°C, Unless Otherwise Noted (Continued)





Typical Performance Characteristics $T_A = 25^{\circ}C$, Unless Otherwise Noted (Continued)

Unity Gain Freq. and Phase Margin vs. $V_{\rm S}$

9

Physical Dimensions inches (millimeters) unless otherwise noted 0.118±0.004 [3±0.1] (0.189)0.118±0.004 0.193±0.004 [4.8] $[3 \pm 0.1]$ [4.9±0.1] (0.040)[1.02] PIN 1 IDENT NOTE 2 (0.016)(0.0256) _{TYP} [0.41] [0.65] 1 LAND PATTERN RECOMMENDATION (0.0256) TYP [0.65]0.005 TYP [0.13] GAGE PLANE 0.043 0.005 MAX R [0.13] TYP [1.09] (0.010)[0.25] ○ 0.002[0.05] A 0.012^{+0.004}_{-0.002} TYP 0.021±0.005 À [0.53±0.12] 0.002-0.006 TYP $[0.3^{+0.10}_{-0.05}]$ $(0.034)_{-}$ 0.0375 SEATING PLANE [0.06 - 0.15][0.86] [0.953] ⊕ 0.002 [0.05]W BS CS 0.007 ± 0.002 MUAO8A (REV B) [0.18±0.05] 8-Pin MSOP

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

NS Package Number MUA08A

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor**

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507