

Data Sheet

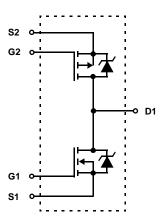
September 2004

20A/10A, 12V, 0.060/0.140 Ohm, Logic Level, Complementary Power MOSFET

These complementary power MOSFETs are manufactured using an advanced MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It is designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and low voltage bus switches. This product achieves full rated conduction at a gate bias in the 3V to 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits.

Formerly developmental type TA49092.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RF3S49092SM	MO-169AB	F3S49092

NOTE: When ordering, use the entire part number. For ordering the MO-169AB in tape and reel, add the suffix 9A to the part number, i.e., RF3S49092SM9A.

Features

- 20A, 12V (N-Channel)
 10A, 12V (P-Channel)
- $r_{DS(ON)} = 0.060\Omega$ (N-Channel) $r_{DS(ON)} = 0.140\Omega$ (P-Channel)
- Temperature Compensating PSPICE[®] Model
- On-Resistance vs Gate Drive Voltage Curves
- · Peak Current vs Pulse Width Curve
- UIS Rating Curve

Symbol

Packaging

JEDEC MO-169AB

RF3S49092SM

Absolute Maximum Ratings $T_C = 25^{\circ}C$ Unless Otherwise Specified

	N-CHANNEL	P-CHANNEL	UNITS
Drain to Source Voltage (Note 1)V _{DSS}	12	-12	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$ Note 1) V_{DGR}	12	-12	V
Gate to Source Voltage	±10	±10	V
Drain Current Continuous ID Pulsed (Figures 5, 26) IDM	20 Refer to Peak Current Curve	10 Refer to Peak Current Curve	Α
Pulsed Avalanche Rating (Figures 6, 27)EAS	Refer to UIS Curve	Refer to UIS Curve	
Power Dissipation $T_{C} = 25^{o}C \qquad P_{D}$ Derate Above 25 ^{o}C	50 0.33	50 0.33	W W/ ^o C
Operating and Storage Temperature T _J , T _{STG}	-55 to 175	-55 to 175	oC
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10sT _L Package Body for 10s, See Techbrief 334T _{pkg}	300 260	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications (N-Channel) $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250\mu A, V_{GS} = 0V, (Figure 13)$		12	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 25$	50μA, (Figure 12)	1	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 12V,	$T_{C} = 25^{\circ}C$	-	-	1	μΑ
		$V_{GS} = 0V$	$T_{C} = 150^{\circ}C$	-	-	50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±10V		-	-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 20A, V _{GS} = 5\	/, (Figure 9, 11)	-	-	0.060	Ω
Turn-On Time	t _{ON}	V _{DD} = 6V, I _D ≈ 20		-	-	100	ns
Turn-On Delay Time	t _d (ON)	[→] V _{GS} = 5V, R _{GS} = 2 → (Figure 10)	$V_{GS} = 5V$, $R_{GS} = 25\Omega$		18	-	ns
Rise Time	t _r			-	60	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	50	-	ns
Fall Time	t _f			-	60	-	ns
Turn-Off Time	t _{OFF}			-	-	140	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 10V	V _{DD} = 9.6V,	-	20	25	nC
Gate Charge at 5V	Q _{g(5)}	$V_{GS} = 0V \text{ to } 5V$	$I_D = 20A$, $R_I = 0.42\Omega$	-	12	15	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0V to 1V	(Figure 15)	-	0.9	1.2	nC
Input Capacitance	C _{ISS}	V _{DS} = 10V, V _{GS} = 0V, f = 1MHz (Figure 14)		-	750	-	pF
Output Capacitance	C _{OSS}			-	700	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	275	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	3.00	oC/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	62	oC/W

N-Channel Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Voltage	V _{SD}	I _{SD} = 20A	-	-	1.5	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 20A$, $dI_{SD}/dt = 100A/\mu s$	-	-	100	ns

Electrical Specifications (P-Channel) $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V, (Figure 34)		-12	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 25$	60μA, (Figure 33)	-1	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -12V,	T _C = 25°C	-	-	-1	μА
	V _{GS} = 0V	$V_{GS} = 0V$	$T_C = 150^{\circ}C$	-	-	-50	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±10V		-	-	±100	nA
Drain to Source On Resistance	r _{DS(ON)}	I _D = 10A, V _{GS} = -5	V, (Figures 30, 32)	-	-	0.140	Ω
Turn-On Time	t _{ON}	$V_{DD} = -6V, I_D \approx 10$		-	-	115	ns
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -5V$, $R_{GS} = 25\Omega$ (Figure 31)		-	25	-	ns
Rise Time	t _r			-	65	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	40	-	ns
Fall Time	t _f			-	45	-	ns
Turn-Off Time	tOFF			-	-	110	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to -10V	V _{DD} = -9.6V,	-	19	24	nC
Gate Charge at -5V	Q _{g(-5)}	$V_{GS} = 0V \text{ to } -5V$	$I_D = 10A$, $R_I = 1.0\Omega$	-	10	14	nC
Threshold Gate Charge	Q _{g(TH)}	$V_{GS} = 0V \text{ to } -1V$	(Figure 36)	-	0.8	1.1	nC
Input Capacitance	C _{ISS}	V _{DS} = -10V, V _{GS} = 0V, f = 1MHz (Figure 35)		-	775	-	pF
Output Capacitance	C _{OSS}			-	550	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	150	-	pF
Thermal Resistance Junction to Case	$R_{ heta JC}$			-	-	3.00	oC/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	62	oC/W

P-Channel Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Voltage	V _{SD}	I _{SD} = -10A	-	-	-1.5	V
Reverse Recovery Time	t _{rr}	$I_{SD} = -10A$, $dI_{SD}/dt = -100A/\mu s$	-	-	100	ns

Typical Performance Curves (N-Channel)

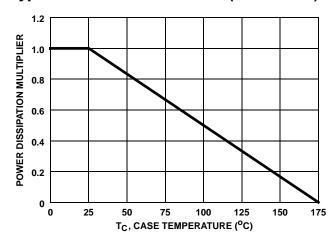


FIGURE 1. NORMALIZED POWER DISSIPATION VS CASE TEMPERATURE

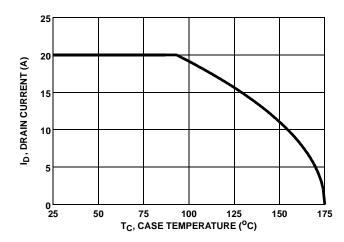


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

RF3S49092SM Rev. C

©2004 Fairchild Semiconductor Corporation

Typical Performance Curves (N-Channel) (Continued)

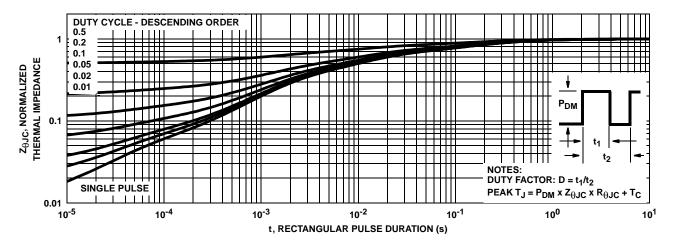


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

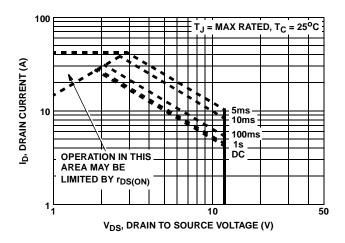
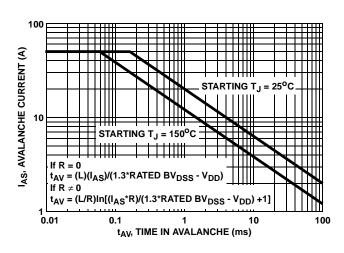



FIGURE 4. FORWARD BIAS SAFE OPERATING AREA

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

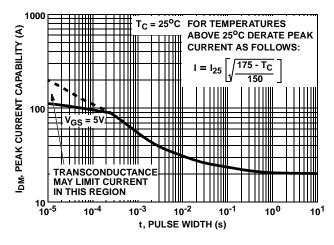


FIGURE 5. PEAK CURRENT CAPABILITY

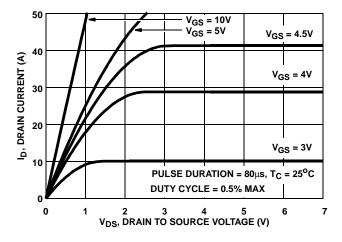


FIGURE 7. SATURATION CHARACTERISTICS

©2004 Fairchild Semiconductor Corporation RF3S49092SM Rev. C

Typical Performance Curves (N-Channel) (Continued)

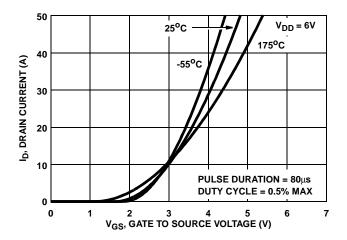


FIGURE 8. TRANSFER CHARACTERISTICS

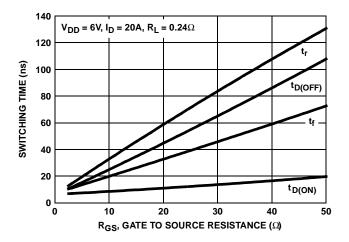


FIGURE 10. SWITCHING TIME vs GATE RESISTANCE

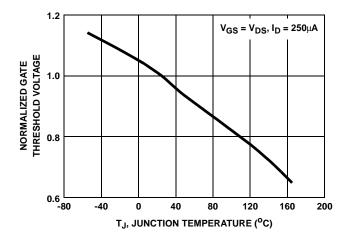


FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

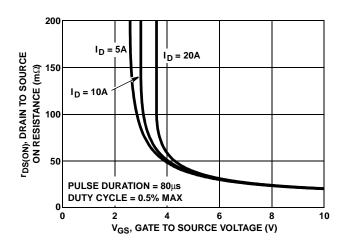


FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

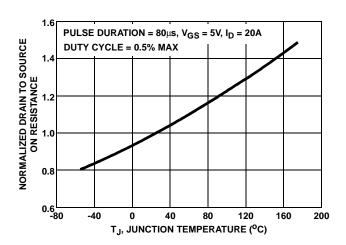


FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

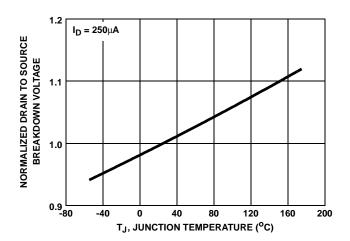


FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (N-Channel) (Continued)

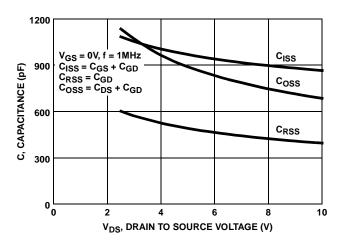
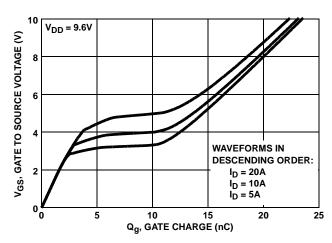



FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms (N-Channel)

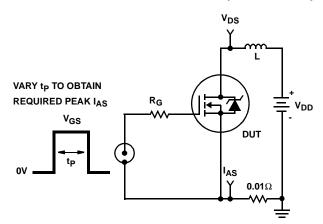


FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT

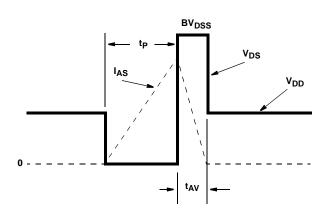


FIGURE 17. UNCLAMPED ENERGY WAVEFORMS

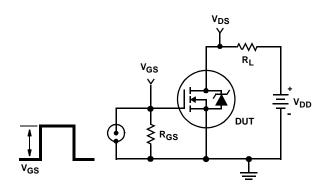


FIGURE 18. SWITCHING TIME TEST CIRCUIT

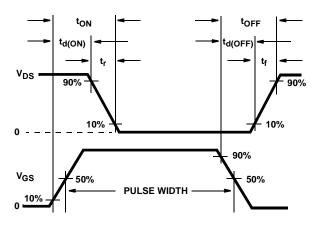


FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms (N-Channel) (Continued)

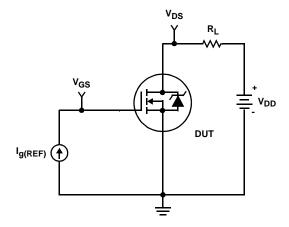


FIGURE 20. GATE CHARGE TEST CIRCUIT

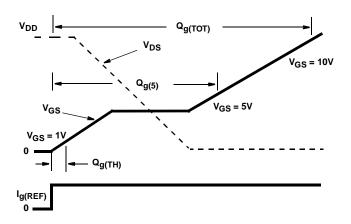


FIGURE 21. GATE CHARGE WAVEFORMS

Typical Performance Curves (P-Channel)

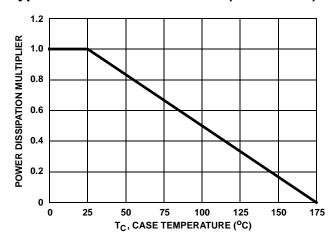


FIGURE 22. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

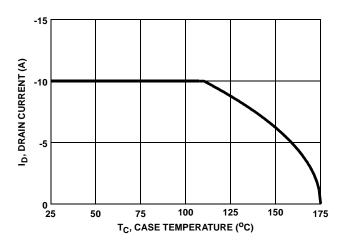


FIGURE 23. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

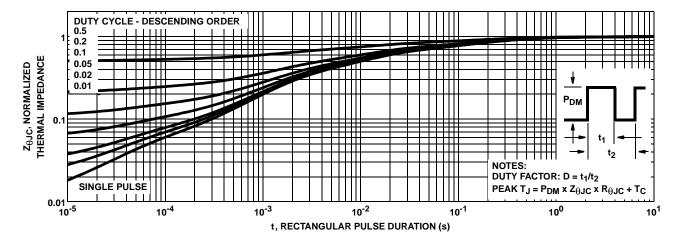


FIGURE 24. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

©2004 Fairchild Semiconductor Corporation RF3S49092SM Rev. C

Typical Performance Curves (P-Channel) (Continued)

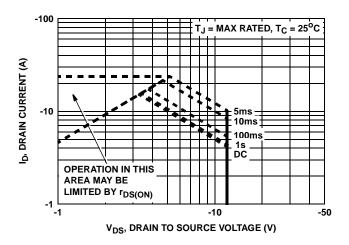
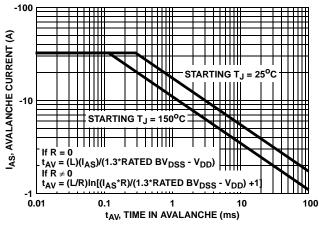



FIGURE 25. FORWARD BIAS SAFE OPERATING AREA

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 27. UNCLAMPED INDUCTIVE SWITCHING

CAPABILITY

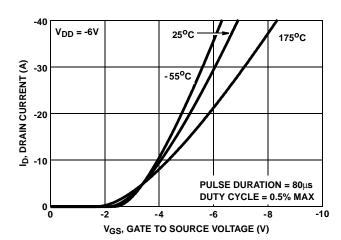


FIGURE 29. TRANSFER CHARACTERISTICS

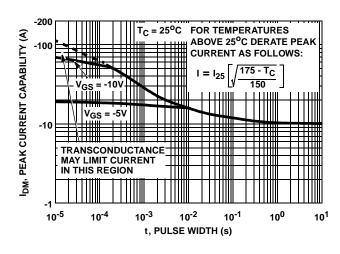


FIGURE 26. PEAK CURRENT CAPABILITY

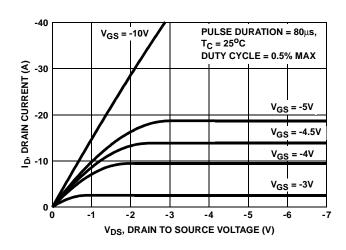


FIGURE 28. SATURATION CHARACTERISTICS

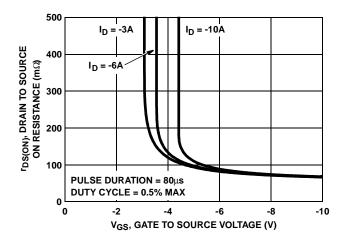


FIGURE 30. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT

©2004 Fairchild Semiconductor Corporation RF3S49092SM Rev. C

Typical Performance Curves (P-Channel) (Continued)

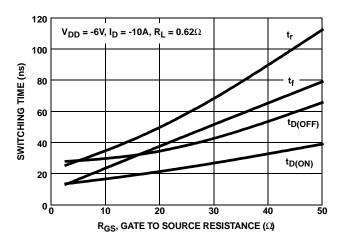


FIGURE 31. SWITCHING TIME AS A FUNCTION OF GATE RESISTANCE

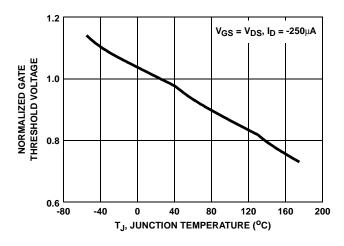


FIGURE 33. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE



FIGURE 35. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

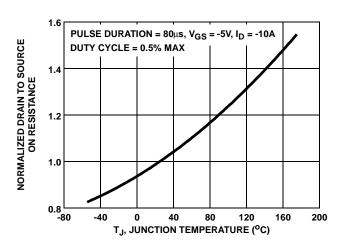


FIGURE 32. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

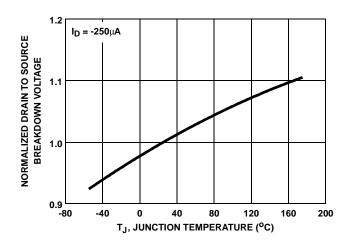
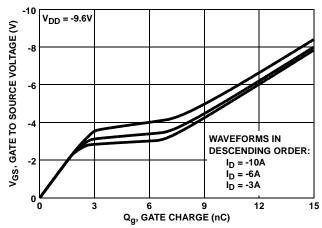



FIGURE 34. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 36. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms (P-Channel)

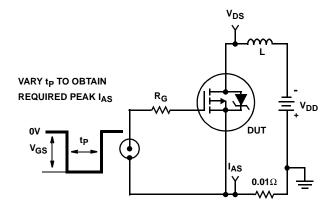


FIGURE 37. UNCLAMPED ENERGY TEST CIRCUIT

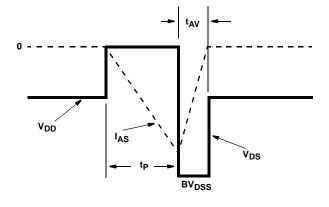


FIGURE 38. UNCLAMPED ENERGY WAVEFORMS

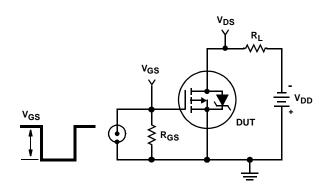


FIGURE 39. SWITCHING TIME TEST CIRCUIT

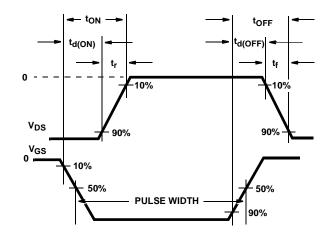


FIGURE 40. RESISTIVE SWITCHING WAVEFORMS

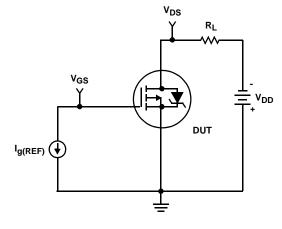


FIGURE 41. GATE CHARGE TEST CIRCUIT

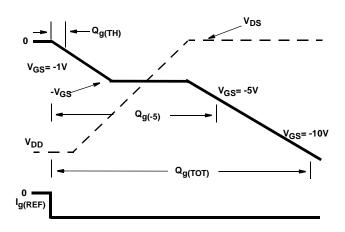
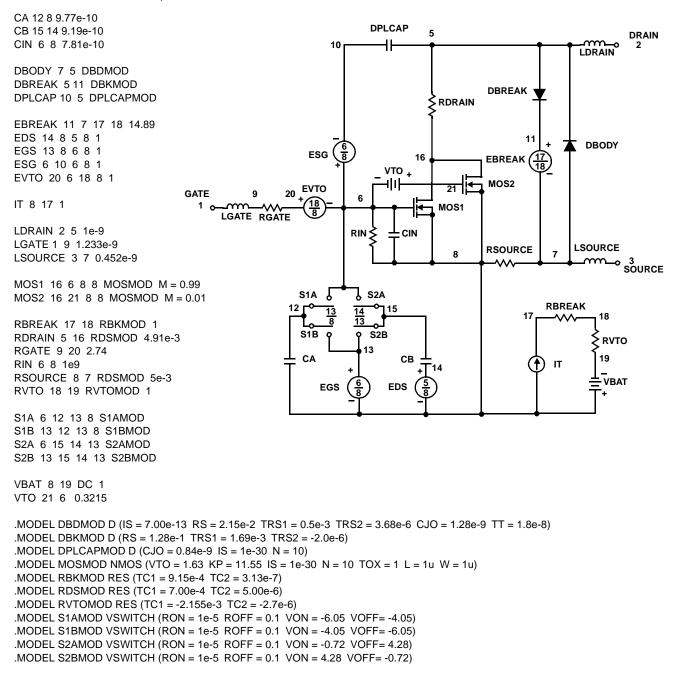


FIGURE 42. GATE CHARGE WAVEFORMS

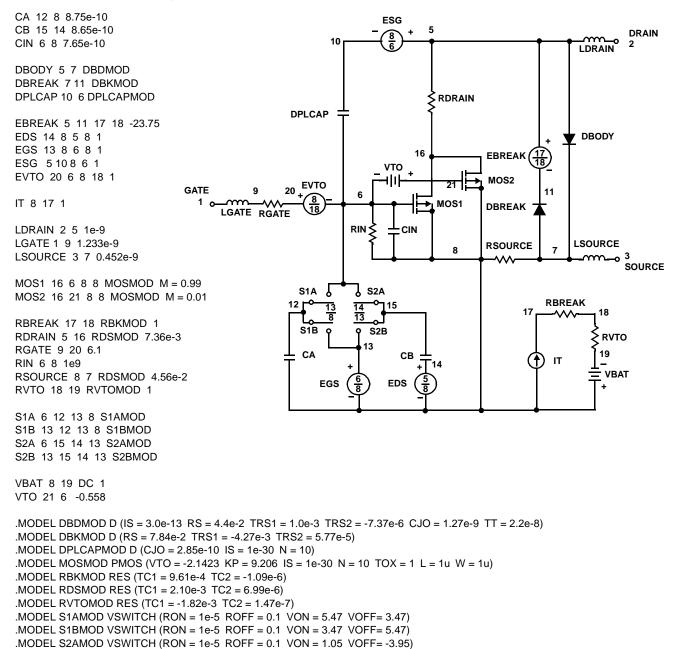

Soldering Precautions

The soldering process creates a considerable thermal stress on any semiconductor component. The melting temperature of solder is higher than the maximum rated temperature of the device. The amount of time the device is heated to a high temperature should be minimized to assure device reliability. Therefore, the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected.

- 1. Always preheat the device.
- The delta temperature between the preheat and soldering should always be less than 100°C. Failure to preheat the device can result in excessive thermal stress which can damage the device.
- The maximum temperature gradient should be less than 5°C per second when changing from preheating to soldering.
- The peak temperature in the soldering process should be at least 30°C higher than the melting point of the solder chosen.
- The maximum soldering temperature and time must not exceed 260°C for 10 seconds on the leads and case of the device.
- After soldering is complete, the device should be allowed to cool naturally for at least three minutes, as forced cooling will increase the temperature gradient and may result in latent failure due to mechanical stress.
- During cooling, mechanical stress or shock should be avoided.

PSPICE Electrical Model

SUBCKT RF3S49092 2 1 3; N-Channel Model rev 9/6/94



NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991.

.ENDS

PSPICE Electrical Model

SUBCKT RF3S49092 2 1 3; P-Channel Model rev 11/8/94

.ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991.

.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.95 VOFF= 1.05)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	$ACEx^{TM}$	FAST®	ISOPLANAR™	Power247™	Stealth™
	ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
	Bottomless™	FPS™	$MICROCOUPLER^{TM}$	PowerSaver™	SuperSOT™-3
	CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
	$CROSSVOLT^{\text{TM}}$	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
	DOME™	GTO™ .	MICROWIRE™	QS^{TM}	SyncFET™
	EcoSPARK™	HiSeC™	MSXTM	QT Optoelectronics™	TinyLogic [®]
	E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
	EnSigna™	<i>i-</i> Lo [™]	OCX^{TM}	RapidConfigure™	TruTranslation™
	FACT™	ImpliedDisconnect™	$OCXPro^{TM}$	RapidConnect™	UHC™
	FACT Quiet Serie		OPTOLOGIC®	μSerDes™	UltraFET®
ACIOSS THE DOMA. ATOURING THE WORLS.			OPTOPLANAR TM PACMAN TM POP TM	SILENT SWITCHER® SMART START™ SPM™	VCX TM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I13