

SWITCHMODE [™] **NPN Silicon Power Transistors**

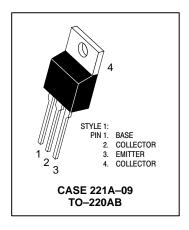
The BUX85 is designed for high voltage, high speed power switching applications like converters, inverters, switching regulators, motor control systems.

Specifications Features:

- VCEO(sus) 450 V
- V_{CES(sus)} 1000 V
- Fall time = $0.3 \,\mu s$ (typ) at $I_C = 1.0 \,A$
- $V_{CE(sat)} = 1.0 \text{ V (max)}$ at $I_{C} = 1.0 \text{ A}$, $I_{B} = 0.2 \text{ A}$

MAXIMUM RATINGS

Rating	Symbol	BUX84	BUX85	Unit
Collector–Emitter Voltage	VCEO(sus)	400	450	Vdc
Collector–Emitter Voltage	V _{CES}	800	1000	Vdc
Emitter Base Voltage	V _{EBO}	5		Vdc
Collector Current — Continuous — Peak (1)	I _C	2 3.0		Adc
Base Current — Continuous — Peak (1)	I _B	0.75 1.0		Adc
Reverse Base Current — Peak	I _{BM}	1		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	50 400		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150		°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purpose: 1/8" from Case for 5 Seconds	TL	275	°C

⁽¹⁾ Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

BUX85

2 AMPERES
POWER TRANSISTOR
NPN SILICON
450 VOLTS
50 WATTS

BUX85

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)						
Collector–Emitter Sus (IC = 100 mAdc, (L	• •	VCEO(sus)	450	_	_	Vdc
Collector Cutoff Current (V _{CES} = Rated Value) (V _{CES} = Rated Value, T _C = 125°C)		ICES			0.2 1.5	mAdc
Emitter Cutoff Current (VEB = 5 Vdc, IC = 0)		I _{EBO}	_	_	1	mAdc
ON CHARACTERISTICS (1)						
DC Current Gain (I _C = 0.1 Adc, V _{CE}	= 5 V)	h _{FE}	30	50	_	_
Collector–Emitter Sati (I _C = 0.3 Adc, I _B = 1 (I _C = 1 Adc, I _B = 20	30 mAdc)	VCE(sat)			0.8 1	Vdc
Base–Emitter Saturation Voltage (I _C = 1 Adc, I _B = 0.2 Adc)		V _{BE(sat)}	_	_	1.1	Vdc
DYNAMIC CHARACTE	RISTICS					
Current–Gain — Bandwidth Product (I _C = 500 mAdc, V _{CE} = 1 0 Vdc, f = 1 MHz)		fŢ	4	_	_	MHz
SWITCHING CHARAC	TERISTICS					
Turn-on Time	V _{CC} = 250 Vdc, I _C = 1 A I _{B1} = 0.2 A, I _{B2} = 0.4 A	^t on	_	0.3	0.5	μs
Storage Time		t _S	_	2	3.5	μs
Fall Time	See fig. 2	t _f	_	0.3	_	μs
Fall Time	Same above cond. at T _C = 95°C	tf	_	_	1.4	μs

⁽¹⁾ Pulse Test: PW = 300 μs, Duty Cycle ≦2%.

BUX85

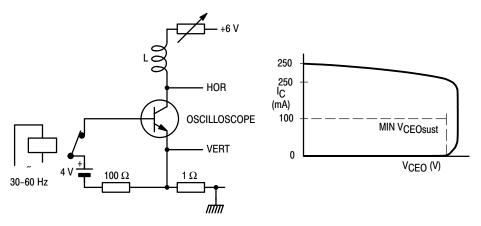
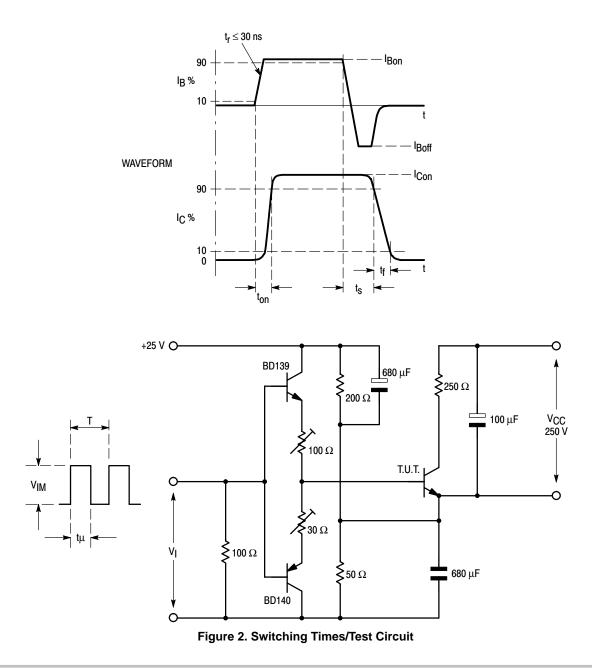



Figure 1. Test Circuit for V_{CEOsust}



http://onsemi.com

BUX85

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 ISSUE AA

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI
 VALUE AND TOLERANCING PER AND TOLERANCING PER ANSI
 VALUE AND TOLERANCI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
C	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
7	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
s	0.045	0.055	1.15	1.39	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.