Preferred Device

Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Sensitive Gate Triggering
- Device Marking: Device Type, e.g., C106B, Date Code

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage(1) (Sine Wave, 50–60 Hz, R_{GK} = 1 k Ω , T_C = -40° to 110°C) C106B C106D, C106D1 C106M, C106M1	^V drm, Vrrm	200 400 600	Volts
On-State RMS Current (180° Conduction Angles, T _C = 80°C)	IT(RMS)	4.0	Amps
Average On–State Current (180° Conduction Angles, T _C = 80°C)	^I T(AV)	2.55	Amps
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = +110°C)	ITSM	20	Amps
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	1.65	A ² s
Forward Peak Gate Power (Pulse Width \leq 1.0 µsec, T _C = 80°C)	PGM	0.5	Watt
Forward Average Gate Power (Pulse Width \leq 1.0 µsec, T _C = 80°C)	PG(AV)	0.1	Watt
Forward Peak Gate Current (Pulse Width \leq 1.0 µsec, T _C = 80°C)	IGM	0.2	Amp
Operating Junction Temperature Range	ТJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque ⁽²⁾	_	6.0	in. lb.

(1) V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

(2) Torque rating applies with use of compression washer (B52200F006). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common.

ON Semiconductor

http://onsemi.com

SCRs 4 AMPERES RMS 200 thru 600 VOLTS

TO-225AA (formerly TO-126) CASE 077 STYLE 2

	PIN ASSIGNMENT
1	Cathode
2	Anode
3	Gate

ORDERING INFORMATION

Device	Deelsere	Ch in min m
Device	Package	Shipping
C106B	TO225AA	500/Box
C106D	TO225AA	500/Box
C106D1	TO225AA	500/Box
C106M	TO225AA	500/Box
C106M1	TO225AA	500/Box

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS (T_C = 25° C unless otherwise noted.)

Characteristic			Symbol		Max		Unit	
Thermal Resistance, Junction to Case			R _{θJC}		3.0	c	°C/W	
Thermal Resistance, Junction to Ambient			R ₀	JA	75	c	°C/W	
Maximum Lead Temperature for Soldering Purposes 1/8" f	rom Case for 10 Se	econds	Т	L	260		°C	
ELECTRICAL CHARACTERISTICS (T _C = 25°C unles	s otherwise noted.)	-	-		-		
Characteristic		Symb	ol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS								
Peak Repetitive Forward or Reverse Blocking Current $(V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, R_{GK} = 1000 \text{ Ohms})$ $T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$		I _{DRM} , I _{RRM}				10 100	μΑ μΑ	
ON CHARACTERISTICS								
Peak Forward On–State Voltage ⁽¹⁾ (I _{FM} = 1 A Peak for C106B, D, & M) (I _{FM} = 4 A Peak for C106D1, & M1)		VTN	Л	_	-	2.2	Volts	
Gate Trigger Current (Continuous dc) ⁽²⁾ (V _{AK} = 6 Vdc, R _L = 100 Ohms)	TJ = 25°C TJ = −40°C	IGT	-	_	15 35	200 500	μΑ	
Peak Reverse Gate Voltage (I _{GR} = 10 μA)		VGRM		_	—	6.0	Volts	
Gate Trigger Voltage (Continuous dc) ⁽²⁾ (V _{AK} = 6 Vdc, R _L = 100 Ohms)	TJ = 25°C TJ = −40°C	VG1	Г	0.4 0.5	.60 .75	0.8 1.0	Volts	
Gate Non–Trigger Voltage (Continuous dc) ⁽²⁾ (V _{AK} = 12 V, R _L = 100 Ohms, T _J = 110°C)		V _{GD}		0.2	-	_	Volts	
Latching Current (V_{AK} = 12 V, I _G = 20 mA)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	۱Ľ			.20 .35	5.0 7.0	mA	
Holding Current (V _D = 12 Vdc) (Initiating Current = 20 mA, Gate Open)	TJ = 25°C TJ = -40°C TJ = +110°C	ΙΗ			.19 .33 .07	3.0 6.0 2.0	mA	

Critical Rate-of-Rise of Off-State Voltage	dv/dt	—	8.0	—	V/µs
(VAK = Rated VDRM, Exponential Waveform, RGK = 1000 Ohms,					
$T_{J} = 110^{\circ}C)$					

(1) Pulse Test: Pulse Width \leq 2.0 ms, Duty Cycle \leq 2%. (2) R_{GK} is not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
VDRM	Peak Repetitive Off State Forward Voltage
IDRM	Peak Forward Blocking Current
VRRM	Peak Repetitive Off State Reverse Voltage
IRRM	Peak Reverse Blocking Current
VTM	Peak On State Voltage
ΙΗ	Holding Current

Figure 5. Typical Gate Trigger Voltage versus Junction Temperature

Figure 6. Typical Latching Current versus Junction Temperature

Package Interchangeability

The dimensional diagrams below compare the critical dimensions of the ON Semiconductor C-106 package with competitive devices. It has been demonstrated that the smaller dimensions of the ON Semiconductor package make it compatible in most lead-mount and chassis-mount applications. The user is advised to compare all critical dimensions for mounting compatibility.

ON Semiconductor C-106 Package

Competitive C-106 Package

PACKAGE DIMENSIONS

TO-225AA (formerly TO-126) CASE 077-09 ISSUE W

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.425	0.435	10.80	11.04	
В	0.295	0.305	7.50	7.74	
С	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094 BSC		2.39 BSC		
Н	0.050	0.095	1.27	2.41	
J	0.015	0.025	0.39	0.63	
К	0.575	0.655	14.61	16.63	
Μ	5°	5° TYP		TYP	
Q	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
V	0.040		1.02		

STYLE 2: PIN 1. CATHODE 2. ANODE 3. GATE

Notes

ON Semiconductor and without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" parameters, including parameters, including or the application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized or unauthorized or unauthorized or unauthorized or unauthorized or unauthorized application.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)

Email: ONlit-german@hibbertco.com

- French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2745 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.