DBL 1032-DI

20W BRIDGE AMPLIFIER

The DBL 1032-D is a class B dual audio power amplifier and easily designed for power booster amplifier that provides a high current capability(up to 3.5A) and that can drive very low impedance loads(down to 1.6 Ω in stereo applications).

FEATURES

O High output power:

 $P_{OUT} = 10 + 10W \text{ at } R_L = 2 \Omega, THD = 10\%, Dual P_{OUT} = 20W \text{ at } R_L = 4 \Omega, THD = 10\%, BTL$

- O Very few external parts.
- O Flexibility in use for Dual and BTL mode.
- No damage for polarity reverse insertion on the PCB.
- O Built in several protection circuits.
 - Thermal protection.
 - Load dump protection.
 - Output DC and AC short protection.
 - Fortuitous open GND protection.

APPLICATION

O Car radio and cassette.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Peak Supply Voltage(for 50ms)	V _{CC} (peak)	40	V
Supply Voltage	V _{CC}	28	V
Operating Supply Voltage	V _{CC} (opr)	18	V
Output Peak Current	I _{OUT} (peak)	4.5	A
Power Dissipation at T _{case} = 60°C	PD	30	W
Storage Temperature	T _{stg}	-40~+150	°C

□ ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, f=1KHz, R_g=600 $\Omega,$ Ta=25°C)

1. BTL Mode.

Characteristic	Symbo	Test Condition		Min.	Тур.	Max.	Unit
Supply Voltage	V _{CC}	-		8	_	18	V
		$V_{CC} = 14.4V$		-	-	150	mV
Output Offset Voltage	V _{OS}	V _{CC} = 13.2V		-	_	150	mV
		$V_{CC} = 14.4 V, R_L = 4 \Omega$		-	75	150	mA
Quiescent Current	Icco	$V_{\rm CC} = 13.2 V, R_{\rm L} = 3.2 \Omega$		-	70	160	mA
		$V_{\rm CC} = 14.4V$	$R_{L} = 4 \Omega$	18	20	_	w
Output Power	POUT	THD = 10%	$R_{L} = 3.2 \Omega$	20	22		w
		$V_{\rm CC} = 13.2 V_{\rm c}$	$R_{L} = 3.2 \Omega$, THD = 10%	17	19	_	w
	:	$V_{\rm CC} = 14.4V, R_{\rm L} = 4 \Omega$				1	%
	THD	50mW≦P _{OUT} ≦5W		-			
Total Harmonic Distortion		$V_{CC} = 13.2V, R_L = 3.2 \Omega$		-	_	1	%
		50mW≦P _{OUT} ≦13W					
I O W W		$P_{OUT} = 2W, R_L = 4 \Omega$		-	9	-	mV _{rms}
Input Sensitivity	S_{i} $P_{OUT} = 2W, R_{L} = 3.2 \Omega$		$R_{\rm L} = 3.2 \Omega$	-	8		mV _{rms}
Input Resistance	R _{IN}	_		70		-	KΩ
Closed Loop Voltage Gain	Gv	V _{OUT} =0dBm		-	50		dB
Input Noise Voltage	V _{NI}	$R_g = 10K \Omega$, BPF = 22Hz ~ 22KHz		-	3	10	μV
Ripple Rejection Ratio	R.R.	$R_g = 10K \Omega$, $f_r = 100Hz$, $V_r = 0.5V_{rms}$		45	55	_	dB
Low Frequency Roll Off(-3dB)	fL	$R_L = 3.2 \Omega$		-	_	40	Hz
High Frequency Roll Off(-3dB)	f _H	$R_{L} = 3.2 \Omega$		20			KHz
Output Voltage with one side of		$V_{CC} = 14.4V, R_L = 4 \Omega$ $V_{CC} = 13.2V, R_L = 3.2 \Omega$		-		2	v
the speaker shorted to ground	V _{OSH}			_	_	2	V
	Eff.		$P_{OUT} = 20W, R_L = 4 \Omega$	-	60	_	%
Efficiency		$V_{\rm CC} = 14.4V$	$P_{OUT} = 22W, R_L = 3.2 \Omega$	-	60	_	%
		$V_{\rm CC} = 13.2V, P_{\rm OUT} = 19W, R_{\rm L} = 3.2 \Omega$		_	58		%

•

DBL 1032-DI

•

ELECTRICAL CHARACTERISTICS (continued)

2. Dual Mode

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Supply Voltage	V _{cc}			8	_	18	V
		$V_{\rm CC} = 14.4 V$		-	65	120	mA
Quiescent Current	Icco	$V_{\rm CC} = 13.2V$		—	62	120	mA
		$V_{CC} = 14.4V$		6.6	7.2	7.8	v
Quiescent Output Voltage	Vcc	$V_{\rm CC} = 13.2V$		6	6.6	7.2	V
			$R_{L} = 4 \Omega$	6	6.5	-	w
		$V_{CC} = 14.4V$	$R_{L} = 3.2 \Omega$	7	8	-	w
		THD = 10%	$R_L = 2 \Omega$	9	10	-	w
Output Power	POUT		$R_L = 1.6 \Omega$	10	11		w
		$V_{\rm CC} = 13.2V$	$R_L = 3.2 \Omega$	6	6.5	-	w
		THD = 10%	$R_L = 1.6 \Omega$	9	10	-	w
		$V_{CC} = 16V$, THD = 10%, R _L = 2 Ω		-	12	-	w
		$V_{\rm CC} = 14.4 V$	$R_{L} = 4\Omega$		0.2	1	%
			$50 \text{mW} \leq \text{P}_{\text{OUT}} \leq 4 \text{W}$	-			
			$R_{L}=2\Omega$,	-	0.3	1	%
	7.10		50mW≦P _{OUT} ≦6W	-			
Total Harmonic Distortion	THD		$R_L = 3.2 \Omega$,		0.2	1	%
	· .		50mW≦P _{OUT} ≦3W	-			
		V _{CC} = 13.2V	$R_L = 1.6 \Omega$,	1			
			40mW≦P _{OUT} ≦6W	-	0.3	1	%
o	V _{CC} = 14.		$R_L = 4 \Omega$ $f = 1 KHz$	-	60	_	dB
Cross Talk	C.T.	$R_g = 5K \Omega, V_O$	UT =4V _{rms} f=10KHz		45	_	dB
Input Sensitivity	c.	D	$R_{L} = 4 \Omega$	_	6	-	mV _{rms}
Input Sensitivity	Si	P _{OUT} =1W	$R_{L} = 3.2 \Omega$	-	5.5	-	mV _{rms}

 $\mathbf{x}^{\mathbf{f}}$

and the second second

•

DBL 1032-D

Characteristic	Symbol	Test Condition		Тур.	Max.	Unit.
		Non inverting Input	70	200	—	KΩ
Input Resistance	R _{IN}	Inverting Input	-	10		KΩ
Open Loop Voltage Gain	G _{VO}	V _{OUT} =0dBm	_	90	—	dB
Closed Loop Voltage Gain	Gv	V _{OUT} = 0dBm	48	50	51	dB
Voltage Gain Ratio	∆Gv	V _{OUT} = 0dBm	_	0.5		dB
Input Noise Voltage	V _{NI}	$R_g = 10K \Omega$, B.P.F. = 22Hz~22KHz	—	1.5	5	μV
Low Frequency Roll Off(-3dB)	fL	$R_{L} = 2 \Omega$	-		50	Hz
High Frequency Roll Off(-3dB)	f _H	$R_{L} = 2 \Omega$	15	_		KHz
Ripple Rejection	R.R.	$R_g = 10K \Omega$, $f_r = 100Hz$, $V_r = 0.5V_{rms}$	0.5	45		dB

DBL 1032-D

□ TEST AND APPLICATION CIRCUITS

1. B T L Amplifier

2. Dual Amplifier

٧.4

□ APPLICATION INFORMATION

1. BTL Amplifier Design.

Voltage and current swigns are twice for a B T L amplifier in comparison with one channel of dual amplifier. Care must be taken when selecting V_{CC} and R_L in order to aviod an output peak current maximum rating.

The following considerations can be useful when designing a bridge amplifier.

Parameter(before clipping)	Symbol	One Channel of Dual	BTL
Peak Output Voltage	V _{OUT} (Max.)	¹ / ₂ (V _{CC} -2V _{CE} (SAT))	V_{CC} -2 V_{CE} (SAT)
Peak Output Current	I _{OUT} (Max.)	1 V _{CC} -2V _{CE} (SAT) 2 R _L	$\frac{1 V_{CC}-2V_{CE}(SAT)}{2 R_L}$
Output Power (rms)	P _{OUT} (Max.)	1 (<u>V_{CC}-2V_{CE}(SAT)</u>) ² 4 2R _L	$\frac{(\frac{V_{CC}-2V_{CE}(SAT)}{2R_L})^2}{2R_L}$

The closed loop voltage gain of BTL configuration is given by (See Fig.3)

$G_{V} = \frac{V_{OUT}}{V_{IN}} = 1 + \frac{R_{1}}{(\frac{R_{2} \cdot R_{4}}{R_{2} + R_{4}})} + \frac{R_{3}}{R_{4}}$							
G _V (dB)	$R_1(\Omega)$	$R_2 = R_4(\Omega)$	$R_3(\Omega)$				
40	1000	39	2000				
50	1000	12	2000				

2. Built-in Protection Circuits

1) Load dump protection.

The DBL1032-D can withstand a voltage pulse train, on pin 9, of the type shown in Fig 4. If the supply voltage peaks to more than 40V, then an IC filter must be inserted between the supply and pin 9 in order to assure that the pulses at pin 9 will be held within the limits shown. A suggested LC network is shown in fig 5. With this network, a train of pulses with amplitude up to 120V and width of 2ms can be applied at point A. The maximum operating supply voltage is 18V because this type of protection is ON when the supply voltage(pulse or DC)exceeds 18V.

2) Short circuit protection.

The DBL1032-D can withstand a permanent short-circuit on the output for a supply voltage up to 16V.

- 3) Reverse insertion protection. The device can handle high current (up to 10A) with no damage for a longer period than the blowout time of quick 2A fuse(nomally connected in series with the supply.)
 4) Open ground protection.
- 4) Open ground protection. The DBL1032-D protection diodes avoid any damage when the device is in the ON condition and ground is accidentally opened.
- DC Voltage Protection. The DBL1032-D can withstand a DC Voltage up to 28V with damage.
- 6) Thermal Protection. The DBL1032-D can withstand an excessive ambient temperature of an overload on the output.
- Loud speaker protection.
 The circuit offers loud speaker protection during short circuit for one wire to ground.

APPLICATION INFORMATION(continued)

3. External Parts Suggestion

11

The recommended values of the components are those shown on BTL application circuit.

Component	Recommended Value	Purpose	Larger Value	Smaller Value
R ₁	120K Ω	Maximum P _{OUT}	Smaller P _{OUT} (Max.)	Smaller P _{OUT} (Max.)
R ₂	1ΚΩ			
R ₃	2K Ω	Closed loop gain	—	_
R_4 and R_5	12 Ω	setting		
R_6 and R_7	1Ω	Frequency stability	Danger of oscillation	_
			at high frequency with	:
			inductive load	
C1	2.2µF	Input DC decoupling		Higher turn on
C ₂	2.2µF	Cancelling turn on pop	High turn on delay	pop, Higher
		and optimizing turn		low frequency
		on delay		cutoff, Increase
				of noise
C ₃	0.1µF	Supply bypass	. –	Danger of oscillation.
C4	10µF	Ripple Rejection	Increase of R.R	Degradation of R.R
			and switch on time	
C5 and C7	100µF	Bootstrapping		Increase of THD at
				low frequency
C_6 and C_8	220µF	Feedback input DC	_	Higher low frequency
		decoupling, low freq-		cutoff
		uency cutoff.		
C_9 and C_{10}	0.1µF	Frequency stability		Danger of oscillation

DBL 1032-DI

TYPICAL PERFORMANCE CHARACTERISTICS

.